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Abstract. We consider the hierarchies of Nonlinear Evolution Equations re-
lated to auxiliary problem of Caudrey-Beals-Coifman type. We give a proof
that the conservation laws for these equations have local densities based on
the theory of the generating operators related to the Caudrey-Beals-Coifman
linear problem.

1. Introduction

This article is about the theory of the so-called soliton equations (completely in-
tegrable equations). Their characteristic property is that they can be cast into the
so called Lax form, or zero curvature form, that is, as compatibility condition (Lax
representation) [L,A] = 0 for two linear systems

Lψ = (i∂x − U(q, qx, . . . , λ))ψ = 0

Aψ = (i∂t − V (q, qx, . . . , λ))ψ = 0.
(1)

Here U, V are matrix functions, depending on the spectral parameter λ and on a set
of ‘potential functions’ q(x, t) ≡ (q1(x, t), q2(x, t), . . . , qN (x, t)) and their spatial
derivatives qx, qxx, . . . and t is the time. The equation [L,A] = 0 is equivalent to an
equation (system) of the type qt = f(q, qx, . . .) which is the soliton equation itself,
[7, 12, 29]. Usually the first of the equations in (1), that is Lψ = 0, is fixed and
called auxiliary linear problem. Changing the second one we obtain hierarchies
of nonlinear evolution equations (NLEEs) related to the linear problem Lψ = 0.
Each hierarchy is usually named by some of the equations belonging to it.
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