PRE-SYMPLECTIC STRUCTURE ON THE SPACE OF CONNECTIONS

TOSIAKI KORI

Department of Mathematics, School of Fundamental Science and Engineering
Waseda University, Okubo3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract. Let X be a four-manifold with boundary three-manifold M. We shall describe (i) a pre-symplectic structure on the space $A(X)$ of connections on the bundle $X \times SU(n)$ that comes from the canonical symplectic structure on the cotangent space $T^*A(X)$. By the boundary restriction of this pre-symplectic structure we obtain a pre-symplectic structure on the space $A^\flat_0(M)$ of flat connections on $M \times SU(n)$ that have null charge.

MSC: 53D30, 53D50, 58D50, 81R10, 81T50
Keywords: Pre-symplectic structures, moduli space of flat connections, Chern-Simons functionals

1. Introduction

Let X be an oriented Riemannian four-manifold with boundary $M = \partial X$. For the trivial principal bundle $P = X \times SU(n)$ we denote by $A(X)$ the space of irreducible connections on X. The following theorems are proved.

Theorem 1. Let $P = X \times SU(n)$ be the trivial $SU(n)$-principal bundle on a four-manifold X. There exists a canonical pre-symplectic structure on the space of irreducible connections $A(X)$ given by the two-form

$$
\sigma^*_A(a, b) = \frac{1}{8\pi^3} \int_X \text{Tr}[(ab - ba)F_A] - \frac{1}{24\pi^3} \int_M \text{Tr}[(ab - ba)A]
$$

for $a, b \in T_AA(X)$.

Theorem 2. Let ω be a two-form on $A(M)$ defined by

$$
\omega_A(a, b) = -\frac{1}{24\pi^3} \int_M \text{Tr}[(ab - ba)A]
$$

188