BERTRAND SYSTEMS ON SPACES OF CONSTANT
SECTIONAL CURVATURE. THE ACTION-ANGLE ANALYSIS.
CLASSICAL, QUASI-CLASSICAL AND QUANTUM PROBLEMS

JAN JERZY SŁAWIANOWSKI and BARBARA GOŁUBOWSKA

Institute of Fundamental Technological Research, Polish Academy of Sciences
5B Pawińskiego Str., 02-106 Warsaw, Poland

Abstract. Studied is the problem of degeneracy of mechanical systems the
configuration space of which is the three-dimensional sphere, the elliptic
space, i.e., the quotient of that sphere modulo the antipodal identification,
and finally, the three-dimensional pseudo-sphere, namely, the Lobatchevski
space. In other words, discussed are systems on groups SU(2), SO(3, \mathbb{R}), and
SL(2, \mathbb{R}) or its quotient SO(1, 2). The main subject are completely degener-
ate Bertrand-like systems. We present the action-angle classical description,
the corresponding quasi-classical analysis and the rigorous quantum formu-
las. It is interesting that both the classical action-angle formulas and the rig-
gorous quantum mechanical energy levels are superpositions of the flat-space
expression, with those describing free geodetic motion on groups.

MSC: 51P05, 53A35, 37N05
Keywords: action-angle description, Bertrand systems, completely degen-
erate problems, elliptic space, Lobatchevski space, quasi-classical analysis,
sphere

CONTENTS

1. Introduction .. 111
2. Constant-Curvature Hypersurfaces in \mathbb{R}^4 and Their Bertrand Potentials 112
3. Some General Features of Motion 122
4. Hamilton-Jacobi Equations, Action-Angle Variables and the Bohr-Sommerfeld
 Quantization Rule .. 125
5. Rigorous Quantization in the Schrödinger Language 133
Acknowledgements .. 136
References ... 136

110