Eighteenth International Conference on Geometry, Integrability and Quantization June 03–08, 2016, Varna, Bulgaria Ivalo M. Mladenov, Guowu Meng and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2017, pp 11–76 doi: 10.7546/giq-18-2017-11-76

SYMMETRY, GEOMETRY AND QUANTIZATION WITH HYPERCOMPLEX NUMBERS

VLADIMIR V. KISIL

School of Mathematics, University of Leeds, Leeds, LS2 9JT, England

Abstract. These notes describe some links between the group $SL_2(\mathbb{R})$, the Heisenberg group and hypercomplex numbers – complex, dual and double numbers. Relations between quantum and classical mechanics are clarified in this framework. In particular, classical mechanics can be obtained as a theory with *noncommutative* observables and a *non-zero* Planck constant if we replace complex numbers in quantum mechanics by dual numbers. Our consideration is based on induced representations which are build from complex-/dual-/double-valued characters. Dynamic equations, rules of additions of probabilities, ladder operators and uncertainty relations are also discussed. Finally, we prove a Calderón–Vaillancourt-type norm estimation for relative convolutions.

CONTENTS

In	Introduction		
1.	Prev	view: Quantum and Classical Mechanics	13
	1.1.	Axioms of Mechanics	14
	1.2.	"Algebra" of Observables	14
	1.3.	Non-Essential Noncommutativity	16
	1.4.	Quantum Mechanics from the Heisenberg Group	17
	1.5.	Classical Noncommutativity	18
	1.6.	Summary	20
2. Groups, Homogeneous Spaces and Hypercomplex Numbers		21	
	2.1.	The Group $\mathrm{SL}_2(\mathbb{R})$ and Its Subgroups	22
	2.2.	Action of $\mathrm{SL}_2(\mathbb{R})$ as a Source of Hypercomplex Numbers	22