Twenty First International Conference on Geometry, Integrability and Quantization June 3–8, 2019, Varna, Bulgaria Ivaïlo M. Mladenov, Vladimir Pulov and Akira Yoshioka Editors **Avangard Prima**, Sofia 2020, pp 138–148 doi: 10.7546/giq-21-2020-138-148

A GENERALIZATION OF THE QUANTIZATION OF POISSON MANIFOLDS

JUMPEI GOHARA[†], YUJI HIROTA[‡] and AKIFUMI SAKO[†]

[†]Graduate School of Science, Tokyo University of Science, 162-8601 Japan [‡]School of Veterinary Medicine, Azabu University, 252-5201 Japan

Abstract. We propose a unified perspective of quantization using a categorical approach. From a fixed Poisson algebra, we define quantization categories as subcategories of the R-module category equipped with the structure of classical limits. The generalized quantization categories have a huge structure including matrix regularization, strict deformation quantization, prequantization, Poisson enveloping algebra and so on.

MSC: 81R60, 81S10, 17B63 *Keywords*: Category theory, noncommutative geometry, Poisson manifold, quantization

1. Quantization Category

The main part of this article is a digest of [4], and some new results about general properties of the quantization category are added.

In this section, we review the quantization category [4]. Before we define the quantization category, we have to introduce some categories as a preparation.

Definition 1. Let M be a fixed Poisson manifold. Let $\mathscr{R}Mod$ be a category of R-module for a commutative ring R over \mathbb{C} . For a Poisson algebra $\mathcal{A}(M)$ on the Poisson manifold M, a subcategory $\mathscr{P}(\mathcal{A}(M))$ of $\mathscr{R}Mod$ is defined as follows.

- 1. $\mathcal{A}(M) \in \mathrm{ob}(\mathscr{P}).$
- 2. For arbitrary $M_i \in ob(\mathscr{P})$, at least a morphism $T_i \in \mathscr{P}(\mathcal{A}(M), M_i)$ exists. We call T_i a quantization map.