Twenty First International Conference on Geometry, Integrability and Quantization June 3–8, 2019, Varna, Bulgaria Ivaïlo M. Mladenov, Vladimir Pulov and Akira Yoshioka Editors **Avangard Prima**, Sofia 2020, pp 149–162 doi: 10.7546/giq-21-2020-149-162

ON VARIATIONAL-LIKE INEQUALITIES AND GLOBAL MINIMIZATION PROBLEM

VSEVOLOD I. IVANOV

Department of Mathematics and Physics, Technical University of Varna Studentska Str. 1, 9010 Varna, Bulgaria

Abstract. In this paper, we obtain necessary and sufficient conditions, which ensure that all pairs of the solution sets of Stampacchia variational-like inequality, Minty variational-like inequality and global minimization problem coincide.

MSC: 47J20, 90C26, 47H05

Keywords: Invariant pseudomonotone directional derivative, invex functions, nonsmooth analysis, nonsmooth optimization, variational-like inequality

1. Introduction

Variational inequalities have been in scope of interests of the authors for the last four decades. Stampacchia variational inequality of differentiable type was developed in Stampacchia [12] and some subsequent works. The necessary optimality condition characterizes the connection between optimization problems and Stampacchia variational inequality. The study of Minty variational inequality originated from Minty [7].

Invex functions were introduced by Hanson [2] in 1981. A lot of papers appeared since then. The book [8] is a comprehensive survey of their properties and application in optimization, economics, and engineering. The notion of invariant pseudomonotonicity was introduced in Yang *et al* [13]. Invariant pseudomonotonicity was generalized to locally Lipschitz functions in term of the Clarke subgradient by Jabarootian and Zafarani [4], but it was not proved in [4] that pseudoinvexity of a function implies invariant pseudomonotonicity of the respective subgradient map. It was found by Ivanov [3] which are the largest classes of functions such that the solution sets of each pair of the following problems coincide: Stampacchia variational inequality, Minty variational inequality, and the global minimization