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ISOPERIMETRIC EXTREMALS OF ROTATION ON SPHERE
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Abstract. In this paper we will introduce a newly found knowledge above
the existence and the uniqueness of isoperimetric extremals of rotation on
two-dimensional (pseudo-) Riemannian manifolds and on surfaces on Eu-
clidean space. We will obtain the fundamental equations of the existence of
isoperimetric extremals of rotation on spheres. They are only and the only
planar sections of the sphere.
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1. Introduction

A special diffeomorphisms between (pseudo-) Riemannian manifolds and mani-
folds with affine and projective connections, for which any special curve maps onto
a special curve, were studied in many works. For example geodesic mappings, for
which any geodesic maps onto geodesic. Analogically holomorphically-projective
and F -planar mappings for which any analytic and F -planar curve maps onto ana-
lytic and F -planar curve, respectively; almost geodesic mapping is defined as, for
any geodesic maps onto an almost geodesic curve, see [5, 8, 11].
Leiko [2–4] introduced rotary mappings for surfaces S2 on Euclidean space and
two-dimensional (pseudo-) Riemannian manifold V2. A diffeomorphism between
two-dimensional (pseudo-) Riemannian manifolds is called rotary if any geodesic
is mapped onto isoperimetric extremal of rotation.
The isoperimetric extremals of rotation have a physical meaning as can be inter-
preted as trajectories of particles with a spin, see [2]. These results are local and
are based on the known fact that a two-dimensional Riemannian manifold V2 is
implemented locally as a surface S2 on Euclidean space. Therefore, we will deal
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