ALTERING POINTS IN PARTIAL METRIC SPACES

DIANA K. NEDELCHEVA
Department of Mathematics, Technical University of Varna, Studentska Str. 1 9010 Varna, Bulgaria

Abstract

This paper elaborates on a composition of two set-valued mappings in partial metric spaces. We establish several fixed point theorems, which generalize and complement some already known results. Especially, even in a partial metric space, our main result is an extension of the fixed point theorems of Abdessalem Benterki.

MSC: 47H04, 47H10, 54H25, 54C60.
Keywords: Fixed point, partial metric space, set-valued mapping

1. Introduction

Fixed point theory is an object of active research with wide range of applications in various fields. It includes results which state that under certain conditions a self map f on a set X admits one or more fixed points, i.e., there exists a point $x \in X$ such that $f(x)=x$. A theorem concerning the existence and uniqueness of a fixed point in a complete metric space was formulated and proved in 1922 by the Polish mathematician Stefan Banach. His result is now known as the Banach's fixed point theorem or the Banach contraction principle. In 1969, by using the term Hausdorff metric, Nadler introduced the notion of a set-valued contraction and proved a set-valued version of the Banach contraction principle. Since then many mathematicians have worked tirelessly in this area and a number of generalizations of Nadler's contraction principle have appeared.
Partial metric spaces were introduced quite recently in 1992 by Matthews as a generalization of the notion of a metric space in which the distance of a point from itself is not necessarily zero. Since then many papers on fixed point theorems for set-valued mappings on partial metric spaces have appeared (see, e.g., [1, 8, 9, 13] and references cited therein). The purpose of this paper is to prove the existence

