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Abstract. The notion of a phase space in classical mechanics is of course
well known. The extension of this concept to field theory however, is a chal-
lenging endeavor, and over the years numerous propositionsfor such a gen-
eralization have appeared in the literature. In this contribution we review a
Hamiltonian formulation of Lagrangian field theory based onan extension
to infinite dimensions of J.-M. Souriau’s symplectic approach to mechan-
ics. Following G. Zuckerman, we state our results in terms ofthe variational
bicomplex. We present a basic example, and briefly discuss some possible
avenues of research.

1. Introduction

It appears it was H. Bacry [3] who first noted that one can find the equations of mo-
tion of (spinning) elementary particles by studying Hamiltonian systems on coad-
joint orbits of the Poincaré group. By doing so, he realized that it is natural and
important to introduce phase spaces not just as a set ofp’s andq’s equipped with
the canonical formdqi∧dpi, but as non-trivial symplectic manifolds. His work was
put in a general context by J.-M. Souriau in his ground-breaking Structure des Sys-
temes Dynamiques[18]. This treatise is the first complete treatment of mechanics
which fully utilizes the language and techniques of symplectic geometry.

It is now widely recognized that a fructiferous approach fortreating dynamical
problems with a finite number of degrees of freedom, is to model them as Hamil-
tonian systems on (in general non-trivial) symplectic manifolds [2, 7, 12, 13]. It
is less clear how to proceed when considering field theory. A completely rigorous
point of view based on manifolds modelled on Banach (or Frechet) spaces would
perhaps be the approach of choice, but to pursue such an endeavor is very delicate:
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