SOFTEX, Sofia 2006, pp 57-78

QUANTUM GROUPS AND STOCHASTIC MODELS

BOYKA ANEVA
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences 72 Tsarigradsko chaussée, 1784 Sofia, Bulgaria

Abstract

The aim of this paper is to show that stochastic models provide a very good playground to enhance the utility of quantum groups. Quantum groups arise naturally and the deformation parameter has a direct physical meaning for diffusion systems where it is just the ratio of left/right probability rate. In the matrix product state approach to diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra which defines a noncommutative space with a quantum group action as its symmetry. Boundary processes amount for the appearance of parameter-dependent linear terms in the algebra which leads to a reduction of the bulk symmetry.

1. Introduction

Stochastic reaction-diffusion processes are of both theoretical and experimental interest not only because they describe various mechanisms in physics and chemistry but they also provide a way of modelling phenomena like traffic flow, kinetics of biopolymerization, interface growth [11, 8, 12].
A stochastic process is described in terms of a master equation for the probability distribution $P\left(s_{i}, t\right)$ of a stochastic variable $s_{i}=0,1,2, \ldots, n-1$ at a site $i=1,2, \ldots, L$ of a linear chain. A configuration on the lattice at a time t is determined by the set of occupation numbers $s_{1}, s_{2}, \ldots, s_{L}$ and a transition to another configuration s^{\prime} during an infinitesimal time step $\mathrm{d} t$ is given by the probability $\Gamma\left(s, s^{\prime}\right) \mathrm{d} t$. The time evolution of the stochastic system is governed by the master equation

$$
\frac{\mathrm{d} P(s, t)}{\mathrm{d} t}=\sum_{s^{\prime}} \Gamma\left(s, s^{\prime}\right) P\left(s^{\prime}, t\right)
$$

for the probability $P(s, t)$ of finding the configuration s at a time t. With the restriction of dynamics to changes of configuration only at two adjacent sites the

