Seventh International Conference on Geometry, Integrability and Quantization June 2–10, 2005, Varna, Bulgaria Ivaïlo M. Mladenov and Manuel de León, Editors **SOFTEX**, Sofia 2006, pp 57–78



## QUANTUM GROUPS AND STOCHASTIC MODELS

## BOYKA ANEVA

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences 72 Tsarigradsko chaussée, 1784 Sofia, Bulgaria

**Abstract.** The aim of this paper is to show that stochastic models provide a very good playground to enhance the utility of quantum groups. Quantum groups arise naturally and the deformation parameter has a direct physical meaning for diffusion systems where it is just the ratio of left/right probability rate. In the matrix product state approach to diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra which defines a noncommutative space with a quantum group action as its symmetry. Boundary processes amount for the appearance of parameter-dependent linear terms in the algebra which leads to a reduction of the bulk symmetry.

## 1. Introduction

Stochastic reaction-diffusion processes are of both theoretical and experimental interest not only because they describe various mechanisms in physics and chemistry but they also provide a way of modelling phenomena like traffic flow, kinetics of biopolymerization, interface growth [11, 8, 12].

A stochastic process is described in terms of a master equation for the probability distribution  $P(s_i, t)$  of a stochastic variable  $s_i = 0, 1, 2, ..., n - 1$  at a site i = 1, 2, ..., L of a linear chain. A configuration on the lattice at a time t is determined by the set of occupation numbers  $s_1, s_2, ..., s_L$  and a transition to another configuration s' during an infinitesimal time step dt is given by the probability  $\Gamma(s, s') dt$ . The time evolution of the stochastic system is governed by the master equation

$$\frac{\mathrm{d}P(s,t)}{\mathrm{d}t} = \sum_{s'} \Gamma(s,s') P(s',t)$$

for the probability P(s,t) of finding the configuration s at a time t. With the restriction of dynamics to changes of configuration only at two adjacent sites the