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Abstract. I describe work in progress with Baryshnikov and Zharnitsky on
periodic billiard orbits that leads one to an exterior differential system (EDS).
I then give a brief introduction to EDS illustrated by several examples.

1. Introduction

The purpose of these notes is to introduce the reader to the techniques ofexterior
differential systems(EDS) in the context of a problem in billiards. The approach
in this article is different from that of [13] and [16], which begin with a study of
linear Pfaffian systems, an important special class of EDS. The billiard problem
results in an EDS that is not a linear Pfaffian system, so these notes deal imme-
diately with the general EDS. For the interested reader, two references regarding
EDS are [6] and [13]. The first is a definitive reference and the second contains an
introduction to the subject via differential geometry. For more details about any-
thing regarding EDS the reader can consult either of these two sources. Cartan’s
book on EDS [10] is still worth looking at, especially the second half, which is a
series of beautiful examples.

We generally will work in the real analytic category, although all the non-existence
results discussed here imply non-existence of smooth solutions.

Notation

If M is a differentiable manifold we letTM , T ∗M denote its tangent and cotan-
gent bundles,Ωd(M) the set of differential forms onM of degreed andΩ∗(M) =
⊕dΩd(M). If I ⊂ T ∗M is a subbundle (more precisely, subsheaf), then we let
{I}diff ⊂ Ω∗(M) denote the differential ideal generated byI, i.e, all elements
of Ω∗(M) of the formα ∧ φ + dβ ∧ ψ whereα, β ∈ I andφ, ψ ∈ Ω∗(M).
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