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PROJECTING ON POLYNOMIAL DIRAC SPINORS
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Abstract. In this note we adapt Axler and Ramey’s method of constructing
the harmonic part of a homogeneous polynomial to the Fischer decomposi-
tion associated to Dirac operators acting on polynomial spinors. The result
yields a constructive solution to a Dirichlet-like problem with polynomial
boundary data.

It is well-known [3] that any homogeneous real or complex polynomial pk of de-
gree k = 0, 1, 2, . . . in n ≥ 2 real variables x = (x1, x2, . . . , xn) admits an unique
decomposition

pk(x) = hk(x) + |x|2pk−2(x) (1)

where hk is a homogeneous harmonic polynomial of degree k, pk−2 is a homoge-
neous polynomial of degree k − 2, and, as usual, |x| =

√
x2

1 + x2
2 + · · ·+ x2

n.
In [1] Axler and Ramey presented an elegant, elementary way of constructing hk

from pk, which involves only differentiation. In essence, for k > 0

hk(x) =

c−1
k |x|2kpk(D)(log |x|), if n = 2

c−1
k |x|n−2+2kpk(D)(|x|2−n), if n > 2

(2)

where

ck =

(−2)k−1(k − 1)!, if n = 2∏k−1
j=0(2− n− 2j), if n > 2

(3)

and where pk(D) is the associated partial differential operator acting on smooth
functions defined on open subsets of Rn obtained by replacing a typical monomial

xα1
1 xα2

2 . . . xαn
n , α1 + α2 + · · ·+ αn = k, of pk by

∂k

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

.

As a by-product they obtained a speedy solution to the Dirichlet problem on the
unit ball of Rn with polynomial boundary data which eliminates the use of the
impractical Poisson integral.
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