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Abstract. We modify the metrics on six-dimensional and seven-dimensional
Riemannian g.o. manifolds constructed in previous published papers and we
obtain pseudo-Riemannian g.o. manifolds. We describe geodesic graphs of
corresponding g.o. spaces. We show that if these geodesic graphs are nonlin-
ear, they are discontinuous on an nonempty set but they are continuous at the
origin.

1. Introduction

Let M be a pseudo-Riemannian manifold. If there is a connected Lie group
G ⊂ I0(M) which acts transitively on M as a group of isometries, then M is
called a homogeneous pseudo-Riemannian manifold. Let p ∈ M be a fixed
point. If we denote by H the isotropy group at p, then M can be identified with the
homogeneous space G/H . In general, there may exist more than one such group
G ⊂ I0(M). For any fixed choice M = G/H , G acts effectively on G/H on the
left. The pseudo-Riemannian metric g on M can be considered as a G-invariant
metric on G/H . The pair (G/H, g) is then called a pseudo-Riemannian homo-
geneous space.
If the metric g is a positive definite, then (G/H, g) is always a reductive homo-
geneous space: We denote by g and h the Lie algebras of G and H respectively
and consider the adjoint representation Ad : H × g → g of H on g. There ex-
ists a direct sum decomposition (reductive decomposition) of the form g = m + h
where m ⊂ g is a vector subspace such that Ad(H)(m) ⊂ m. If the metric g is
indefinite, the reductive decomposition may not exist (see [6] for an example of
nonreductive pseudo-Riemannian homogeneous space). For a fixed reductive de-
composition g = m + h there is a natural identification of m ⊂ g = TeG with the
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