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Abstract. Here we give some necessary and sufficient conditions for the
validity of the Saxon-Hutner conjecture concerning the preservation of the
energy gaps into an infinite one-dimensional lattice.

Let us consider the Schrödinger equation

d2Ψ
dx2

+ (E − U(x))Ψ = 0 (1)

where Ψ is the wave function, the spectral parameter E is the particle energy and
U(x) is a known function – the potential. Quantum mechanics deals with the
above equation and its generalizations. When U(x) = 0 we have a free particle
and when E = k2, two solutions are eikx and e−ikx representing respectively a
particle moving to the right (k > 0) and a particle moving to the left (k < 0).
We will use the standard group theory notation for the invertible matrices listed
below. The Lie group of pseudo-unitary matrices of signature (1, 1) (i.e., those
2× 2 matrices having one positive and one negative square in their canonical form
〈z, z〉 = |z1|2−|z2|2), or what is the same – the group of all linear transformations
of the complex plane preserving the above hermitian form 〈 , 〉 will be denoted as
U(1,1) while SL(2,C) will denote the corresponding unimodular group keeping
the symplectic structure [ , ] invariant (here [ζ, η] is the oriented area of the par-
allelogram spanned on the vectors ζ, η and GL(2,R) will denote the group of all
real linear transformations. We have 〈a, b〉 = i

2 [a, b̄].

Proposition 1. The intersection of any two groups coincides with the intersection
of the three of them – it is the special (1, 1) unitary group SU(1, 1).

A monodromy operator for (1) with a finite potential is a linear operator acting on
the space of states of the free particle in a special way.
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