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Abstract. This paper presents the formalism of symplectic supermanifolds
with a non-homogeneous symplectic form and their prequantization.

1. Supermanifolds

The idea behind a supermanifold is that one wants to have anticommuting vari-
ables, i.e., a kind of “numbers” such that ξη = −ηξ. In this context it is customary
to denote ordinary/commuting (real) “numbers” by Latin characters and the anti-
commuting kind by Greek characters. One of the ideas to create such “numbers”
is to replace the standard real line R by a graded commutative ring A = A0 ⊕A1

and to take the commuting “numbers” xi in the even part: xi ∈ A0 and to take the
anticommuting variety ξj in the odd part: ξj ∈ A1. The basic example of such a
ring is the exterior algebra of an infinite dimensional (real) vector space E

A =
∧
E =

( ∞⊕
k=0

∧
2kE

)
⊕
( ∞⊕
k=0

∧
2k+1E

)
.

The first step in creating a theory of differential geometry based on these com-
muting and anticommuting “numbers,” usually called even and odd coordinates, is
to define what smooth functions are. When one tries to define the derivative of a
function, one encounters immediately two problems: i) the most natural topology
on the graded ring A is not Hausdorff making uniqueness of limits questionable
and ii) due to nilpotent elements in A even a difference quotient is problematic.
The solution adopted in [3] is based on the following two observations.

Lemma 1. Let U ⊂ Rp be a convex open set and let f : U → Rd be a function of
class C1. Then the function g : U2 → End(Rp,Rd) ∼= Rpd defined by

g(x, y) =
∫ 1

0
f ′
(
sx+ (1− s)y

)
ds
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