
ISBN: 978-619-160-313-8





Integrability, Recursion

Operators
and Soliton Interactions

Boyka Aneva

Georgi Grahovski
Rossen Ivanov
Dimitar Mladenov

Editors

Avangard Prima

2014



Boyka Aneva

Institute for Nuclear Research
and Nuclear Energy
Bulgarian Academy of Sciences
72 Tsarigradsko chaussee
1784 Sofia, Bulgaria

E-mail: blan@inrne.bas.bg

Georgi Grahovski

Institute for Nuclear Research
and Nuclear Energy
Bulgarian Academy of Sciences
72 Tsarigradsko chaussee
1784 Sofia, Bulgaria

E-mail: grah@inrne.bas.bg

Rossen Ivanov

School of Mathematical Sciences
Dublin Institute of Technology
Kevin Street, Dublin 8, Ireland

E-mail: rossen.ivanov@dit.ie

Dimitar Mladenov

Department of Theoretical Physics
Faculty of Physics
St. Kliment Ohridsky University of Sofia
5 James Bourchier Str, 1164 Sofia, Bulgaria

E-mail: dimitar.mladenov@phys.uni-sofia.bg

Proceedings of the International Conference on

INTEGRABILITY, RECURSION OPERATORS AND SOLITON INTERACTIONS

This volume is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
especially the rights of reprinting, translation, re-use of illustrations, reproductions on microfilms or other means
now known or to be invented, and storage in data banks. For any kind of use whatsoever, a written permission
from the copyright owners must be obtained.

c© B. Aneva, G. Grahovski, R. Ivanov and D. Mladenov, Editors

ISBN 978-619-160-313-8

c© Avangard Prima, 2014



CONTENTS

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Boyka Aneva
DEFORMED SQUEEZED STATE SOLUTION TO THE ASYMMETRIC
SIMPLE EXCLUSION PROCESS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Andrey Angelow and Dimitar Trifonov
SCHRÖDINGER MINIMUM UNCERTAINTY STATES OF EM-FIELD
IN NONSTATIONARY MEDIA WITH NEGATIVE DIFFERENTIAL
CONDUCTIVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Oksana Bihun and Francesco Calogero
SOLVABLE AND/OR INTEGRABLE MANY-BODY MODELS ON A
CIRCLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Danail Brezov, Clementina Mladenova and Ivaïlo Mladenov
EULER DECOMPOSITION IN NON-ORTHOGONAL BASES . . . . . . . . . . . . 63

Evstati G. Evstatiev
A MODEL SUITABLE FOR NUMERICAL INVESTIGATION OF
BEAM-SOLITON INTERACTION IN ELECTROSTATIC PLASMAS. . . . . . 74

Vladimir Gerdjikov, Georgi Grahovski, Alexander Mikhailov
and Tihomir Valchev
ON SOLITON INTERACTIONS FOR A HIERARCHY OF GENERALIZED
HEISENBERG FERROMAGNETIC MODELS ON SU(3)/S(U(1)× U(2))
SYMMETRIC SPACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3



4

Vladimir S. Gerdjikov and Alexandar B. Yanovski
ON SOLITON EQUATIONS WITH Zh AND Dh REDUCTIONS:
CONSERVATION LAWS AND GENERATING OPERATORS . . . . . . . . . . . . . 118

David Henry, Darryl Holm and Rossen Ivanov
ON THE PERSISTENCE PROPERTIES OF THE CROSS-COUPLED
CAMASSA-HOLM SYSTEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Decio Levi and Christian Scimiterna
FOUR POINTS LINEARIZABLE LATTICE SCHEMES . . . . . . . . . . . . . . . . . . 165

Giuseppe Marmo, Giovanni Sparano and Gaetano Vilasi
CLASSICAL AND QUANTUM SYMMETRIES REDUCTION AND
INTEGRABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Clementina Mladenova, Fan Zhang and Dirk Söffker
PARAMETRIC REPRESENTATIONS OF SO(n) ORTHOGONAL
MATRICES FOR THE PURPOSES OF QUADRATIC STABILITY
ANALYSIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Petar Popivanov and Angela Slavova
ON VENTCEL’S TYPE BOUNDARY CONDITION FOR LAPLACE
OPERATOR IN A SECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Vladimir I. Pulov, Mariana Ts. Hadzhilazova and Ivaïlo M. Mladenov
DELAUNAY SURFACES IN TERMS OF WEIERSTRASSIAN
FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Mario Salerno
MAPPING BETWEEN NONLINEAR SCHRÖDINGER EQUATIONS
WITH REAL AND COMPLEX POTENTIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Giovanni Sparano and Gaetano Vilasi
REPULSIVE GRAVITY OF LIGHT BEAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235



5

Michail Todorov
ROLE OF THE NONLINEAR COUPLING IN THE COLLISION
DYNAMICS OF QUASI-PARTICLES GOVERNED BY VECTOR NLSE. . . 247

Tihomir I. Valchev
ON THE QUADRATIC BUNDLES RELATED TO HERMITIAN
SYMMETRIC SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Tihomir Valchev, Rossen Ivanov and Vladimir Gerdjikov
ZAKHAROV-SHABAT SYSTEM WITH CONSTANT BOUNDARY
CONDITIONS. REFLECTIONLESS POTENTIALS AND END POINT
SINGULARITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Vassil Vassilev, Peter Djondjorov, Mariana Hadzhilazova
and Ivaïlo Mladenov
ANALYTIC REPRESENTATION OF A CLASS OF AXIALLY
SYMMETRIC WILLMORE SURFACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Mihai Visinescu
KILLING FORMS ON KERR-NUT-(A) dS SPACES OF EINSTEIN-
SASAKI TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Alexandar Yanovski
RECURSION OPERATORS AND EXPANSIONS OVER ADJOINT
SOLUTIONS FOR THE CAUDREY-BEALS-COIFMAN SYSTEM
WITH Zp REDUCTIONS OF MIKHAILOV TYPE . . . . . . . . . . . . . . . . . . . . . . . 343

Selected list of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Reports, delivered at the conference and list of participants . . . . . . . . . . . . . . . . . 366





Preface

This volume contains selected papers based on the talks, presented at the Confer-
ence ’Integrability, Recursion Operators and Soliton Interactions’, held in Sofia,
Bulgaria (29–31 August 2012) at the Institute for Nuclear Research and Nuclear
Energy of the Bulgarian Academy of Sciences. Included are also invited papers
presenting new research developments in the thematic area. The Conference was
dedicated to the 65-th birthday of our esteemed colleague and friend Vladimir
Gerdjikov. The event brought together more than 30 scientists, from 6 European
countries to celebrate Vladimir’s scientific achievements. All participants enjoyed
a variety of excellent talks in a friendly and stimulating atmosphere. The main top-
ics of the conference were those where Vladimir has contributed enormously dur-
ing his career: integrable nonlinear partial differential equations, underlying alge-
braic and geometric structures of the integrable systems, soliton solutions, soliton
interactions, quantum integrable systems, discrete integrable systems and applica-
tions of the nonlinear models. The papers, included in this volume will be useful
to researchers with interests in these areas.
The organizers would like to express their gratitude to all participants and authors
for their contribution to the success of the conference, and to Prof. Dimitar Tonev,
director of the INRNE and the deputy director Prof. Lachezar Georgiev for their
support.
Last, but nor least important, the organizers are grateful to Prof. Ivaïlo Mladenov
and Dr. Mariana Hadjilazova for their help in the preparation of this volume.

Boyka Aneva
Georgi Grahovski

Rossen Ivanov
Dimitar Mladenov
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Dear participants in the IROSI conference,
Dear friends and colleagues,

It is a great pleasure to welcome you here in Sofia at our Institute. With this con-
ference we are celebrating the 65-th birthday of our esteemed colleague Vladimir
Gerdjikov and the achievements of his active, fruitful and interesting career.
Vladimir was born on 7-th January 1947 in Stara Zagora, Bulgaria. He has studied
in the Physics Department of the University of Sofia during the period 1964-1969.
He did his Master Thesis at Göteborg Techniska Högskolan, Sweden, under the
supervision of Professor Karl-Erik Eriksson. He defended it at the end of 1969
at the Faculty of Physics of Sofia University. In the 1970–71 Vladimir has been
appointed as a physicist at the Institute of Physics of the Bulgarian Academy of
Sciences, Sofia. His career path after that is

1971–1974
Graduate student at Leningrad State University, USSR, where in 1974 he
defended his PhD thesis ”On the infrared singularities of the Quantum
Electrodynamics” supervised by L. D. Faddeev and P. P. Kulish from the
Leningrad Division of Steklov Institute of Mathematics;

1975–1976
Research associate at INRNE, Sofia;

1977–1983
Research associate and senior research associate at the Laboratory of The-
oretical Physics at the Joint Institute for Nuclear Research, Dubna, USSR;

1984–1996
Research associate and senior research associate at INRNE;

1987
Doctor of Science with a Thesis “Generating Operators of Soliton–Type
Nonlinear Evolution Equations, Related to the Semisimple Lie Algebras”
defended at the Laboratory of Theoretical Physics of the Joint Institute for-
Nuclear Research, Dubna, USSR;

1996
Full Professor at INRNE, Sofia;

2002
Founder and Head of the Laboratory of solitons, coherence and geometry at
the Institute for Nuclear Research and Nuclear Energy.

Professor Gerdjikov has been very successful in his administrative work as well.
He worked very actively as a member of the General Assembly of the Bulgarian
Academy of Sciences (2004–2008) as a member of the Scientific council of the
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Bulgarian Academy of Sciences (2004-2008) and as a Deputy Director of the In-
stitute (2005–2008).
Vladimir Gerdjikov is an author of more than 190 scientific publications, includ-
ing: more than 100 papers in scientific journals; more than 90 published reports
in proceedings of international conferences; one monograph and co-editor of 5
proceedings volumes; more than 1000 independent citations, organizer and co-
organizer of 13 conferences, workshops and symposia.
His main fields of research and achievements will be presented and celebrated at
this conference, which I’m sure will be very fruitful and interesting.
I like very much his talent and enthusiasm to work with the young people. Indeed,
he has supervised to completion 6 PhD students. This is one of the best results
achieved in the Institute by a research supervisor! He has supervised also several
MSc and BSc diploma theses.
All these results have been obtained by a tremendous amount of work. For his
achievements Gerdjikov as a team leader has been awarded the INRNE Prizes for
best work in theoretical physics two times: in 1998 and 2007.
Gerdjikov is a person who is addicted to work in a good sense, in a sense that
he enjoys his work. Being always busy is something typical for his style, this
is a feature which makes him unique. However this is possibly the only way of
achieving such profound results - both in terms of quantity and quality.
I am very glad that many colleagues from abroad have gathered here for Vladimir’s
celebration. I am glad that here are also several young colleagues, some of whom
as organizers of this nice event.
I would like to give Vladimir an official address as a memory of this special occa-
sion.
I wish him many more successful years ahead in his career, more students, more
conferences and symposia and to continue to be as energetic as ever!

Prof. D. Tonev, PhD
Director of INRNE

Sofia, August 29, 2012
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Professor Vladimir S. Gerdjikov. Short Biography

Vladimir Gerdjikov was born on 7th January 1947 in Stara Zagora, Bulgaria.
He obtained his higher education from
the Physics Faculty of the University of
Sofia during 1964-1969. Among his lec-
turers were several distinguished Bulgar-
ian scientists such as Professors Christo
Christov, Ivan Zlatev, Angel Nikolov,
Alipi Mateev, Assen Datsev. Vladimir
then prepared his Master Thesis in 1969
at Göteborg Techniska Hogskolan, Swe-
den, under the supervision of K.E. Eriks-
son, and defended it the same year at
the Theoretical Physics Department of
the Physics Faculty of the University of
Sofia.

His first appointment was during the years 1970-71 as a physicist at the Institute of
Physics of the Bulgarian Academy of Sciences, Sofia, Bulgaria.
During 1971-74, Vladimir Gerdjikov was a graduate student at Leningrad State
University and in 1974 he completed and successfully defended his PhD thesis
“On the Infrared Singularities of the Quantum Electrodynamics” at the Physics
Department of Leningrad State University, Leningrad, USSR. His research was
supervised by Ludvig D. Faddeev and Peter P. Kulish from the Leningrad Division
of Steklov Institute of Mathematics.
Following his return to Sofia, during 1975-76 Vladimir Gerdjikov worked as a
research associate at INRNE. Later on (1977-83), he moved to the Joint Institute
for Nuclear Research, Dubna, USSR where he was a research associate and senior
research associate at the Laboratory of Theoretical Physics. In 1987 he visited
Dubna for three months and defended his Doctor of science thesis “Generating
Operators of Soliton Type Nonlinear Evolution Equations, Related to the Semi-
simple Lie Algebras”.
These two long term visits (Leningrad 1971–1974 and Dubna 1977–1983) formed
to a greater extent the scientific tastes and abilities of Vladimir. Being in Dubna
he used the good chance to renew his collaboration with the Leningrad Division of
Steklov Institute and especially with P. Kulish, but now on a new topic - integrable
systems, both classical and quantum, and inverse scattering method. This topic
was being developed also in Dubna by V. Makhan’kov, V. Gerdt and others. Be-
sides, at the end of 1970’s Vladimir Zakharov started a seminar on soliton theory
in Moscow. This gave Vladimir an excellent opportunity not only to follow the
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latest achievements in the field, but also to start personal contacts with many of the
members of Zakharov’s school, one of the leading groups in the world in the area
of nonlinear sciences, including Sergey Manakov, Alexander Mikhailov, Evgeny
Kuznetsov and others.

Also in Dubna he had the chance to meet Francesco Calogero and Marco Boiti.
Although brief, these two meetings demonstrated common scientific interests and
in fact led to a long term informal collaboration. Indeed, in 1985 Boiti invited
him for three months to Lecce University, which started the Italian ‘period’ which
still goes on. Another very important factor was the series of NEEDS biannual
conferences which were held in Gallipoli, near Lecce, and where Vladimir was a
regular participant.

The series of informal, but regular visits of Vladimir to Italy, besides Lecce Univer-
sity, included also Salerno University (G. Vilasi, G. Sparanno, M. Salerno), Uni-
versity of Naples ( G. Marmo), University of Rome ( F. Calogero, A. Degasperis,
O. Ragnisco) and others.

Let me now briefly outline the topics to which Vladimir has contributed.

His PhD thesis deals with the infrared singularities in quantum electrodynamics.
He proved that the quasiclassical results of Faddeev and Kulish hold true also for
the quantum case. Thus, the infrared divergencies and the infrared singularities can
be removed if instead of the naked charged particles, one considers their coherent
states.

His next field became the soliton theory and the integrable models.

The idea that the inverse scattering method is a generalized Fourier transform
started from the famous AKNS paper. Kaup was the first who realized that this
fact is based on the completeness relation of the ‘squared solutions’ of the 2 × 2
Lax operator L and derived it. Soon after that, Gerdjikov and Khristov proposed
an alternative rigorous proof of Kaup’s result. Further development of this field
initiated by Gerdjikov and collaborators included explicitly the gauge covariant
formulation of the ‘squared solutions’ and the expansions over them. Thus, it
became possible to derive all fundamental properties of the relevant soliton equa-
tions on the same footing. These expansions are actually spectral decompositions
of the recursion operators Λ± which generate both the class of soliton equations
and their Hamiltonian hierarchy. In a number of cases this approach allows one
to derive the action-angle variables. Most of these results are summarized in the
monograph with Gaetano Vilasi and Alexandar Yanovsky “Integrable Hamiltonian
Hierarchies” published by Springer ‘Lecture Notes in Physics’ in 2008.

The expansions over the ‘squared solutions’ and their completeness relations were
generalized in several directions. The first one concerned the Lax operators, which
are quadratic 2 × 2 bundles. They allow one to solve the hierarchy containing
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the derivative nonlinear Schroödinger equation and several of its generalizations,
including the well known Gerdjikov-Ivanov (GI) equation.

The second one considered the generalized Zakharov-Shabat (GZS) systems of
n × n Lax operators. Using such Lax operators one is able to solve the N -wave
equations, the multicomponent nonlinear Schroödinger equation (MNLS) equa-
tions and their gauge equivalent. It is important here to introduce the ‘squared
solutions’ using the fundamental analytic solutions (FAS) of L.

The third one concerned the Caudrey-Beals-Coifman (CBC) system whose FAS
and ‘squared solutions’ are constructed in a substantially more elaborated way than
for GZS. In the last years CBC systems with Zh and Dh-symmetries were treated
and the completeness of their ‘squared solutions’ was also proved. Using it one
can derive the action-angle variables for the 2-dimensional Toda field hierarchy.

In the early 1990’s Vladimir started working, together with Ivan Uzunov, on an-
other topic – N -soliton interactions in adiabatic approximation. In 1996 they de-
rived a dynamical system for the 4N soliton parameters. Soon after that, a sim-
plification of this system was proposed, which is known now as the complex Toda
chain. An important consequence of this is the possibility to predict the asymptotic
behavior of N -soliton trains. Since then this model has been tested a number of
times and has been shown to describe adequately the soliton interactions not only
for the nonlinear Schrödinger equation, but also of its vector generalization – the
Manakov model. Both these equations find numerous applications in nonlinear
optics, plasma physics, hydrodynamics etc.

His ability to organize research activities and collaborations culminated in 2002
when, together with several other colleagues, Vladimir founded the Laboratory of
Solitons, Coherence and Geometry at the Institute for Nuclear Research and Nu-
clear Energy, and he has acted as the Head of the Laboratory ever since then. The
scientific activities of the Laboratory, besides the soliton theory and soliton inter-
actions, was extended to problems in quantum mechanics, differential geometry
and the theory of coherent states. Since 2006 the Laboratory was joined by DSc
Nikolay Kostov (1956-2011), who contributed very much to the study of multi-
component soliton equations and their reductions. Several classes of special re-
ductions of the N -wave equations and the MNLS equations related to simple Lie
algebras were analyzed. These include several special MNLS equations describing
Bose-Einstein condensates.

During the last years Vladimir started another trend for constructing new types
of integrable interactions based on the Riemann-Hilbert Problem with canonical
normalization combined with Mikhailov’s reduction group.
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Vladimir was an organizer and co-organizer of several conferences, workshops
and symposia. Most recently he was a co-organizer of the two international work-
shops on Complex structures, Integrability and Vector Fields together with Stan-
cho Dimiev and Kouei Sekigawa (2008, 2010) held in Sofia. Together with Boyka
Aneva and Georgi Grahovski he organized the International conference "Symme-
tries and Integrability of Difference Equations", SIDE-9 held in 2010 in Varna,
Bulgaria.
He achieved remarkable results as a teacher and supervisor. He supervised 6 suc-
cessful PhD dissertations, defended at various institutions: JINR, Dubna, USSR,
INRNE and Cergy Pontoise University, Paris, France. He was a supervisor of sev-
eral MSc and BSc theses as well. It is not an exaggeration to say that he has created
a school of scientists, raised under his guidance, advice and mentorship.
Vladimir has designed and delivered two advanced lecture courses - on Soliton
Theory and on the Theory of Lie Groups and Lie algebras for final year students
and young researchers. He still works very actively in the area of integrability,
shares his ideas and experience with younger colleagues, travels widely and col-
laborates with many scientists around the world.
In conclusion, I would like to wish our teacher, mentor, colleague and friend
Vladimir Gerdjikov a long life, good health, a lot of energy and enthusiasm, and
many more wonderful scientific ideas and results. I am sure that Vladimir will
continue to be a source of inspiration, optimism and creativity to everyone who
knows him.

Rossen Ivanov
Dublin Institute of Technology

Dublin Ireland
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Opening speech
Dear Colleagues and Friends,

During the opening I heard a lot of nice words about myself, and I could not believe
they were all true. It is impossible for one person to do so much work all by
himself. And if I succeeded, that was because there were a lot of colleagues and
friends helping me.

First of all I would like to thank Rossen Ivanov and Georgi Grahovski who are
former graduate students of mine, for the idea to organize this conference. To say
frankly, in the beginning I was reluctant, because it is not such a big deal to get that
old. After all I agreed, not because of myself, but because such an event would be
beneficial to my colleagues, friends and future students who may come around.

I am grateful to the Directorate of the Institute: Professor Dimitar Tonev and his
deputy Professor Lachezar Georgiev for the support that made the conference pos-
sible.

Next I am grateful to my teachers at the University and mostly to academician
Khristo Khristov. His lectures introduced not only me, but most of my colleagues
in the field of theoretical and mathematical physics. I learned a lot from Peter
Kulish and Ludvig Faddeev during the three years in Leningrad, and from Evgeny
Khristov during the years I spent in Dubna.

The results in my papers wouldn’t have been possible without co-authors, and I
was lucky to work with a number of young people eager to understand and learn.
So it is natural that I start with my former graduate students, noting briefly the
results they are responsible for:

• Michail Ivanov – the GI equation;
• Alexander Yanovski – the gauge covariant approach to the recursion opera-

tors;
• Yordan Vaklev (1942 – 1999) and Michail Ivanov – the gauge covariant

difference evolution equations;
• Evstati Evstatiev – his timely and precise observation lead us to the discov-

ery of the complex Toda chain;
• Rossen Ivanov – reductions of N -waves, complete integrability of Camassa-

Holm equation and CTC related to semisimple Lie algebras;
• Georgi Grahovski – reductions of N -waves, real Hamiltonian forms of 2-

dim Toda’s and many others;
• Tihomir Valchev, Victor Atanasov – soliton solutions to MNLS and their

reductions, applications to Bose-Einstein condensates.
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Thanks are due also to my co-authors who were able to put up with my character
and still produce good results:

• Marco Boiti, Flora Pempinelli – Wadati-Konno-Ichikawa equation;
• Gaetano Vilasi and Alexander Yanovsky – for long years of collaboration

during which we completed the monograph;
• Ivan Uzunov for proposing the study of N -soliton interactions and David

Kaup, Evstati Evstatiev, Georgi Diankov for analyzing and testing the CTC;
• Nikolay Kostov (1956 – 2011) came up with most of the ideas for the papers

on Bose-Einstein condensates (BEC);
• Giuseppe Marmo for patiently teaching me differential geometry, Hamil-

tonian dynamics that lead to the construction of real Hamiltonian forms
jointly with Gaetano Vilasi and Assen Kyuldjiev;

• Mario Salerno, Vladimir Konotop, Bakhtiyor Baizakov, Victor Enol’skii –
modulational instability of periodic solutions to MNLS and BEC;

• Evgeny Doktorov (1947 – 2011), Natalia Matsuka, Jianke Yang – CTC for
derivative NLS;

• Rossen Dandoloff, Nikolay Kostov (1956 – 2011), Georgi Grahovski – dif-
ferential geometry and Manakov model;

• Adrian Constantin, Rossen Ivanov – Camassa-Holm equation;
• Alexander Mikhailov, Tihomir Valchev, Georgi Grahovski – for deriving

new types of soliton equations – the GMV equation;
• Radha Balakrishnan, Rossen Dandoloff, Dimiter Pushkarov, Avadh; Saxena

– for organizing and editing the proceedings of the conference on “Topi-
cal Issue on Geometry, Integrability and Nonlinearity in Condensed Matter
Physics”, Bansko (2001);

• Milcho Tsvetkov and Plamen Fiziev – for organizing and editing the pro-
ceedings of the conference dedicated to Georgi Manev (1984 – 1965);

• Ivaïlo Mladenov, Stancho Dimiev, Kouei Sekigawa, Yasuo Matsushita – for
organizing and editing the proceedings of two conferences on CSIVF in
2008 and 2010;

• Boyka Aneva, Plamen Iliev, Vassilis Papageorgiou. for organizing and
editing the proceedings of SIDE-9 conference (2010) as special issue of
SIGMA.

Special thanks to

• Francesco Calogero, Marco Boiti, Flora Pempinelli, Giusseppe Marmo,
Gaetano Vilasi, Andrey Pogrebkov, Boris Konopelchenko, Barbara Prinari
for giving me the chance to participate in a number of conferences on soli-
tons;
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• Ivaïlo Mladenov, Mariana Hadzhilazova, Akira Yoshioka for organizing
the traditional conferences on Geometry, Integrability and Quantization in
Varna.

Thus, I was able to enjoy south Italy and the Black sea and to have fruitful discus-
sions with many famous scientists!
Finally and most of all I thank my parents and my family!!
In 1976 I married my wife Svetla, who at that time was working at Dubna. In 1977
I arrived to Dubna as a husband of my wife. That was crucial, because:

• I lost my freedom but gained a beautiful daughter and a son;
• I lost a bet to Evgeni Khristov but gained a teacher and a co-author;
• I had the chance to meet Vladimir Zakharov and his team in Moscow and

Chernogolovka;
• I completed most of my DSc thesis and later defended it.

Best wishes to all of you.

Vladimir Gerdjikov
INRNE, Bulgarian Academy of Sciences

Sofia, Bulgaria
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Abstract. Deformed squeezed states are generalized intelligent Schrödinger
sates. They are implemented for an exact solution of the stationary n-species
stochastic diffusion boundary problem.

1. Introduction

Coherent and squeezed states have a wide range of applications to various problems
in many different areas of physics [1–4].
By origin the coherent states are quantum states, but at the same time they are
parametrized by points in the phase space of a classical system. This makes them
very suitable for the study of systems where one encounters a relationship between
classical and quantum descriptions. From this point of view, interacting many-
particle systems with stochastic dynamics provide an appropriate playground to
enhance the utility of generalized coherent states.
A stochastic process is described in terms of a master equation for the probabil-
ity distribution P (si, t) of a stochastic variable si = 0, 1, 2, ..., n − 1 at a site
i = 1, 2, ..., L of a linear chain. A configuration on the lattice at a time t is deter-
mined by the set of occupation numbers s1, s2, ..., sL and a transition to another
configuration s′ during an infinitesimal time step dt is given by the probability
Γ(s, s′)dt. The time evolution of the stochastic system is governed by the master
equation

dP (s, t)

dt
=
∑

s′

Γ(s, s′)P (s′, t) (1)

21
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for the probability P (s, t) of finding the configuration s at a time t. With the
restriction of dynamics that changes of configuration can only occur at two adjacent
sites, the rates for such changes depend only on these sites. The two-site rates
Γ ≡ Γik

jl , i, j, k, l = 0, 1, 2, ..., n − 1 are assumed to be independent from the
position in the bulk. At the boundaries, i.e., sites 1 and L, additional processes can
take place with single-site rates Li

k and Ri
k, i, k = 0, 1, ..., n− 1.

For processes where each lattice site can be occupied by a finite number of different-
type particles, the master equation can be mapped to a Schrödinger equation in
imaginary time of an n-state quantum spin-S Hamiltonian (n = 2S + 1 dis-
tinct states) with nearest-neighbour interaction in the bulk and single-site boundary
terms

dP (t)

dt
= −HP (t), H =

∑

j

Hj,j+1 +H(L) +H(R). (2)

The probability distribution thus becomes a state vector in the configuration space
of the quantum spin chain and the ground state of the Hamiltonian, in general non-
Hermitian, corresponds to the steady state of the stochastic dynamics where all
probabilities are stationary. The mapping provides a connection with integrable
quantum spin chains and allows for exact results of the stochastic dynamics with
the formalism of quantum mechanics.
A different description, which is also based on the relationship of a Markov pro-
cess probability distribution with the quantum Hamiltonian picture, is the matrix-
product states approach to stochastic dynamics [8, 9]. The idea is that the station-
ary probability distribution, i.e., the ground state of a quantum Hamiltonian with
nearest-neighbour interaction in the bulk and single-site boundary terms can be ex-
pressed as a product of (or a trace over) matrices that form a representation of a
quadratic algebra

Γik
jlDiDk = xlDj − xjDl, i, j, k, l = 0, 1, ..., n− 1 (3)

determined by the dynamics of the process. For diffusion processes that will be
considered in this paper, Γik

ki = gik and the n-species diffusion quadratic algebra
has the form

gikDiDk − gkiDkDi = xkDi − xiDk (4)

where gik and gki are positive (or zero) probability rates, xi are c-numbers and
i, k = 0, 1, ..., n − 1. (No summation over repeated indices in equation 4.) The
algebra has a Fock representation in an auxiliary Hilbert space where the n gen-
erators D act as operators. For systems with periodic boundary conditions, the
stationary probability distribution is related to the expression

P (s1, ..., sL) = Tr(Ds1Ds2 ...DsL). (5)
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When boundary processes are considered the stationary probability distribution is
related to a matrix element in the auxiliary vector space

P (s1, ..., sL) = 〈w|Ds1Ds2 ...DsL |v〉 (6)

with respect to the vectors |v〉 and 〈w|, determined by the boundary conditions

〈w|(Lk
iDk + xi) = 0, (Rk

iDk − xi)|v〉 = 0 (7)

where the x-numbers sum up to zero, because of the form of the boundary rate
matrices

Li
i = −

n−1
∑

j=0

Li
j , Ri

i = −

n−1
∑

j=0

Ri
j ,

n−1
∑

i=0

xi = 0. (8)

These relations simply mean that one associates with an occupation number si at
position i a matrix Dsi = Dk, i = 1, 2, ..., L, k = 0, 1, ..., n − 1 if a site i is
occupied by a k-type particle. The number of all possible configurations of an n-
species stochastic system on a chain of L sites is nL and this is the dimension in
the configuration space of the stationary probability distribution as a state vector.
Each component of this vector, i.e., the (unnormalized) steady-state weight of a
given configuration, is a trace or an expectation value in the auxiliary space given
by equation (5) or equation (6). The quadratic algebra reduces the number of
independent components to only monomials symmetrized upon using the relations
(4).
The boundary vectors with respect to which one determines the stationary proba-
bility distribution of the n-species diffusion process are generalized, coherent or
squeezed states of the deformed Heisenberg algebra underlying the algebraic solu-
tion of the corresponding quadratic algebra.
In this paper we consider a deformed squeezed state solution to the asymmetric
simple exclusion process (ASEP). We present the stationary solution to the 2-
species boundary ASEP and then generalize the boundary problem solution of the
n-species stochastic diffusion process.

2. Deformed Coherent and Squeezed States

For completeness we first recall the definitions of a deformed coherent and squeezed
state of the deformed Heisenberg algebra. It is generated by the operators a, a+

and q±N with defining relations

aa+ − qa+a = 1, qNa+ = qa+qN , qNa = q−1aqN (9)

where 0 < q < 1 is a real parameter and

a+a =
1− qN

1− q
≡ [N ]. (10)
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A Fock representation is obtained in a Hilbert space spanned by the orthonormal
basis (a+)n√

[n]!
|0〉 = |n〉, n = 0, 1, 2, ... and 〈n|n′〉 = δnn′

a|0〉 = 0, a|n〉 = [n]1/2|n− 1〉, a+|n〉 = [n+ 1]1/2|n+ 1〉. (11)

The Hilbert space consists of all elements |f〉 =
∑

∞

n=0 fn|n〉 with complex fn
and finite norm with respect to the scalar product 〈f |f〉 =

∑

∞

n=0 |fn|
2. The q-

deformed oscillator algebra has a Bargmann–Fock representation on the Hilbert
space of entire analytic functions.
Generalized or q-deformed coherent states are defined as the eigenstates of the de-
formed annihilation operator a and are labelled by a continuous (in general com-
plex) variable z

a|z〉 = z|z〉, |z〉 =
∞
∑

n=0

zn
√

[n]!
|n〉. (12)

These vectors belong to the Hilbert space for |z|2 < [∞] = 1
1−q

·

The scalar product of two coherent states for different values of the parameter z is
non-vanishing

〈z|z′〉 =
∞
∑

0

(z̄z′)n

[n]!
= ez̄z

′

q (13)

and they can be properly normalized with the help of the q-exponent on the RHS
of (13)

|z〉 = expq

(

−
|z|2

2

)

expq(za
+)|0〉. (14)

The q-deformed coherent states reduce to the conventional coherent states of a one-
dimensional Heisenberg algebra in the limit q → 1−. These generalized coherent
states carry the basic characteristics of the conventional ones, namely continuity
and completeness (resolution of unity).
To recall the definition of a squeezed state [3], [14–16] we write the deformed
Heizenberg algebra in an equivalent commutator form

[a, a+] = qN (15)

Then there is a two-parameter-dependent linear map to a pair of “quasi”-oscillators
with (the symbol of) a “quasiparticle” number operator N

A = µa+ νa+, A+ = µ̄a+ + ν̄a. (16)

These operators generate a deformed Heisenberg algebra

[A,A+] = qN (17)

provided that
qN = (|µ|2 − |ν|2)qN . (18)
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In the limit q → 1− the relation between the parameters of the conventional
squeezed state is recovered [17]. In the deformed “quasi”-oscillator algebra Fock
representation space with a vacuum |0〉s one can define a normalizable coherent
state |ζ〉s as the eigenvector of the annihilation operator A

|ζ〉s = e
−

1

2
|ζ|2

q eζA
+

q |0〉s. (19)

A squeezed state of the deformed creation and annihilation operators is a normal-
ized solution of the eigenvalue equation

(µa+ νa+)|ζ, µ, ν〉s = ζ|ζ, µ, ν〉s = A|ζ〉s. (20)

This proposition is motivated by the analogy with the non-deformed case [18–
20] and by the fact that such normalized eigenstate vectors of the written above
linear combination of q-deformed oscillators appear in the solution of the boundary
problem of a many-particle non-equilibrium system.

3. Physical Applications

As a physical we consider a diffusion process with n species on a chain of L

sites with nearest-neighbour interaction with exclusion, i.e., a site can be either
empty or occupied by a particle of a given type. In the set of occupation numbers
(s1, s2, ..., sL) specifying a configuration of the system si = 0 if a site i is empty,
si = 1 if there is a first-type particle at a site i,...,si = n−1 if there is an (n−1)th-
type particle at a site i. On successive sites the species i and k exchange places
with probability gikdt, where i, k = 0, 1, 2, ..., n − 1. With i < k, gik are the
probability rates of hopping to the left, and gki to the right. The event of exchange
happens if out of two adjacent sites one is a vacancy and the other is occupied by
a particle, or each of the sites is occupied by a particle of a different type. The
n-species symmetric simple exclusion process is known as the lattice gas model of
particle hopping between nearest-neighbour sites with a constant rate gik = gki =
g. The n-species asymmetric simple exclusion process with hopping in a preferred
direction is the diffusion-driven lattice gas of particles moving under the action
of an external field. The process is totally asymmetric if all jumps occur in one
direction only, and partially asymmetric if there is a different non-zero probability
of both left and right hopping. The number of particles ni of each species in the
bulk is conserved and this is the case of periodic boundary conditions. In the case
of open systems, the lattice gas is coupled to external reservoirs of particles of
fixed density. In most studied examples one considers phase transitions inducing
boundary processes when a particle of type k, k = 1, 2, ..., n − 1 is added with a
rate L0

k and/or removed with a rate Lk
0 at the left end of the chain, and it is removed

with a rate Rk
0 and/or added with a rate R0

k at the right end of the chain.
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In the matrix-product states approach the boundary rate matrices define the bound-
ary vectors with respect to which the stationary probability distribution is related to
an expectation value of product of matrices obeying the quadratic algebra (4). The
problem to be solved is to find matrix representations of the quadratic algebra con-
sistent with the boundary conditions (7), namely that the combinations Lk

iDk + xi
and Rk

iDk−xi have common vectors with eigenvalue zero, where the only nonva-
nishing boundary rates are Lk

0, L
0
k, R

k
0 , R

0
k, k = 1, 2, ..., n− 1. Once this problem

is solved important physical quantities like correlation functions, currents, den-
sity profiles can be obtained which is the advantage of the matrix-product states
approach. Despite the extensive study of simple generalizations of the exclusion
process solutions of systems of n- species is lacking.
We are implementing here the deformed squeezed states and the deformed coherent
states, introduced in the previous section, to obtain a solution to the general n
boundary value problem.

3.1. The Two-Species Model with Incoming and Outgoing Particles at Both
Boundaries

As an example we consider the two-species partially asymmetric simple exclusion
process. We simplify the notations, namely at the left boundary a particle can be
added with probability αdt and removed with probability γdt, and at the right
boundary it can be removed with probability βdt and added with probability δdt.
The system is described by the configuration set s1, s2, ..., sL where si = 0 if a site
i = 1, 2, ..., L is empty and si = 1 if a site i is occupied by a particle. The particles
hop with a probability g01dt to the left and with a probability g10dt to the right,
where without loss of generality we can choose the right probability rate g10 = 1
and the left probability rate g01 = q. The quadratic algebra D1D0 − qD0D1 =
D0+D1 is solved by a pair of deformed oscillators a, a+ (see [23]). The boundary
conditions have the form

(βD1 − δD0)|v〉 = |v〉, 〈w|(αD0 − γD1) = 〈w|. (21)

For a given configuration (s1, s2, ..., sL) the stationary probability is given by the
expectation value

P (s) =
〈w|Ds1Ds2 ...DsL |v〉

ZL

(22)

where Dsi = D1 if a site i = 1, 2, ..., L is occupied and Dsi = D0 if a site i is
empty and ZL = 〈w|(D0 + D1)

L|v〉 is the normalization factor to the stationary
probability distribution. Within the matrix-product ansatz, one can also evaluate
physical quantities such as the current J through a bond between site i and site
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i+ 1, the mean density 〈si〉 at a site i, the two-point correlation function 〈sisj〉

J =
ZL−1

ZL

〈si〉 =
〈w|(D0 +D1)

i−1D1(D0 +D1)
L−i|v〉

ZL

〈sisj〉 =
〈w|(D0 +D1)

i−1D1(D0 +D1)
j−i−1D1(D0 +D1)

L−j |v〉

ZL

(23)

and higher correlation functions. In terms of the deformed boson operators the
boundary conditions read

(βa− δa+)|v〉 =
√

1− q

(

1−
β − δ

1− q

)

|v〉

〈w|(αa+ − γa) = 〈w|

(

1−
α− γ

1− q

)

√

1− q.

(24)

Hence, according to equation (20), the boundary vectors |v〉 and 〈w| are squeezed
coherent states, eigenstates of an annihilation and a creation operator A,A+

(βa− δa+)|v〉 = A|v〉 = v|v〉, 〈w|(αa+ − γa) = 〈w|A+ = 〈w|w (25)

corresponding to the eigenvalues

v(β, δ) =
√

1− q

(

1−
β − δ

1− q

)

, w(α, γ) =
√

1− q

(

1−
α− γ

1− q

)

. (26)

The explicit form of the (unnormalized) vectors in the oscillator Fock space repre-
sentation is given by

〈w| =
∞
∑

n=0

wn(α, γ)
√

[n]!
|n〉, |v〉 =

∞
∑

n=0

vn(β, δ)
√

[n]!
|n〉.

As already noted the operators A and A+ are not each other’s Hermitian conjugate.
To find the expectation values of normally ordered monomials in D0 and D1, we
make use of the inverse transformation

a =
α

αβ − γδ
A+

δ

αβ − γδ
A+, a+ =

β

αβ − γδ
A+ +

γ

αβ − γδ
A. (27)

Hence with ∆ = αβ − γδ 6= 0

D0 +D1 =
2

1− q
+

α+ γ

∆
√
1− q

A+
β + δ

∆
√
1− q

A+ (28)

and the normalization factor 〈w|(D0 + D1)
L|v〉 to the stationary probability dis-

tribution can be easily calculated in terms of the operators A and A+. One has
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(D0 +D1)
L =

(

2

1− q
+

α+ γ

∆
√
1− q

A+
β + δ

∆
√
1− q

A+

)L

=

L
∑

m=0

L!

m!(L−m)!

2L−m∆−m

(1− q)L−
m

2

((α+ γ)A+ (β + δ)A+)m. (29)

To evaluate the above expression one makes use of the eigenvalue properties of the
squeezed states 〈w| and |v〉. For the purpose, one first applies the procedure for
normal ordering of polynomials in A, A+. To evaluate the normalization factor for
boundary processes with incoming particles and outgoing particles at both ends of
the chain one has to normally order boson operators whose deformed commuta-
tor is not normalized to unity. We spare the technical details which result in the
formula

((α+ γ)A+ (β + δ)A+)m =

[m/2]
∑

k=0

Sm
k (α+ γ)k(β + δ)k

×

m−2k
∑

l=0

[m− 2k]!

[l]![m− 2k − l]!
((β + δ)A+)l((α+ γ)A)m−2k−l. (30)

One explores next the eigenvalue properties of the operators A,A+ with respect to
the vectors |v〉 and 〈w| and finds the normalization factor 〈w|(D0+D1)

L|v〉 = ZL

to the stationary probability distribution

ZL =
L
∑

m=0

((

L

m

))

2L−m

(1− q)L−
m

2

[m/2]
∑

k=0

m−2k
∑

l=0

S(k)
m

(α+ γ)k(β + δ)k

(αβ − γδ)m

×

((

m− 2k

l

))

q

((β + δ)w)l((α+ γ)v)m−2k−l. (31)

Consequently one directly obtains an expression for the current J . We note that an
explicit formula for the normalization factor to the stationary probability distribu-
tion (and hence for the current) of the two-species diffusion system with incoming
and outgoing particles at both boundaries has not been written elsewhere. Using
the prescription of normal ordering, one can readily calculate the correlation func-
tions and any other quantity of interest like density profiles, etc. Since none of the
physical quantities of interest for this process have been presented elswhere, this
strongly supports the squeezed coherent state solution as a powerful method for
the study of stochastic systems.



Deformed Squeezed State Solution to the Asymmetric Simple Exclusion Process 29

3.2. Deformed Squeezed State Solution of the Boundary Problem for the
n-Species Process

The algebra for the n-species open asymmetric exclusion process of a diffusion
system coupled at both boundaries to external reservoirs of particles of fixed den-
sity has the form

Dn−1D0 − qD0Dn−1 =
x0

gn−1,0
Dn−1 −

xn−1

gn−1,0
D0

D0Dk − qkDkD0 = −
x0

gk
Dk

DkDn−1 − qkDn−1Dk =
xn−1

gk

DkDl − q−1
kl DlDk = 0

(32)

where k, l = 1, 2, ..., n− 2, x0 + xn−1 = 0 and

q =
g0,n−1

gn−1,0
, qkl =

gkl

glk
, qk =

gk0

g0k
=

gn−1,k

gk,n−1
· (33)

The equalities in the last formula, together with the relations

gk = g0k = gk,n−1, g0k − gk0 = gk,n−1 − gn−1,k = g0,n−1 − gn−1,0 (34)

yield a mapping to the commutation relations of a q-deformed Heisenberg algebra
(see [13]) of n− 1 oscillators ak, a+k , k = 0, 1, 2, ..., n− 2. A solution is obtained
by a shift of the oscillators a0, a+0

D0 =
x0

gn−1,0

(

1

1− q
+

a+0√
1− q

)

Dn−1 =
−xn−1

gn−1,0

(

1

1− q
+

a
√
1− q

) (35)

and by the identification of the rest of the generators Dk, k = 1, 2, ..., n − 2 with
the remaining n− 2 creation operators a+k

Dk = a+k , k 6= 0. (36)

For the phase transition inducing boundary processes, when a particle of type k is
added with a rate L0

k and removed with a rate Lk
0 at the left end of the chain and

when it is removed with a rate Rk
0 and added with a rate R0

k at the right end of the
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chain, the boundary vectors are defined by the systems of equations

〈w|
(

(−L0
1 − L0

2 − . . .− L0
n−1)D0 + L1

0D1

)

+〈w|
(

L2
0D2 + . . .+ Ln−1

0 Dn−1 + x0
)

= 0

〈w|(L0
1D0 − L1

0D1) = 0

〈w|(L0
2D0 − L2

0D2) = 0

...

〈w|(L0
n−2D0 − Ln−2

0 Dn−2) = 0

〈w|(L0
n−1D0 − Ln−1

0 Dn−1 + xn−1) = 0

(37)

and
(

(−R0
1 −R0

2 − . . .−R0
n−1)D0 +R1

0D1

)

|v〉

+
(

R2
0D2 + . . .+Rn−1

0 Dn−1 − x0
)

|v〉 = 0

(R0
1D0 −R1

0D1)|v〉 = 0

(R0
2D0 −R2

0D2)|v〉 = 0

...

(R0
n−2D0 −Rn−2

0 Dn−2)|v〉 = 0

(R0
n−1D0 −Rn−1

0 Dn−1 − xn−1)|v〉 = 0.

(38)

The two systems are similar and can be solved by the same procedure. From the
second to the last but one equation in (37) and (38), one has

〈w|Lk
0Dk = 〈w|L0

kD0 (39)

Rk
0Dk|v〉 = R0

kD0|v〉 (40)

for k = 1, 2, . . . n− 2. Hence one inserts equations (39) in the first equation of the
system (37) and equations (40) in the first equation of the system (38) to obtain in
both cases an equation that coincides with the last equation of the corresponding
systems. Thus the system for the left and right boundary vectors are reduced to the
pair of equations

〈w|(L0
n−1D0 − Ln−1

0 Dn−1) = 〈w|(Rn−1
0 Dn−1 −R0

n−1D0)|v〉 = |v〉. (41)
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Making use of the explicit solution for Dn−1 and D0 as shifted deformed oscilla-
tors (with x0 = −x1 = 1), we rewrite equations (41) as

(Rn−1
0 a0 −R0

n−1a
+
0 )|v〉 =

√

1− q

(

gn−1,0 −
Rn−1

0 −R0
n−1

1− q

)

|v〉

〈w|(L0
n−1a

+
0 − Ln−1

0 a0) =〈w|

(

gn−1,0 −
L0
n−1 − Ln−1

0

1− q

)

√

1− q.

(42)

The latter equations, in accordance with equation (20), determine the boundary
vectors as squeezed coherent states of the deformed boson operators a0, a+0 corre-
sponding to the eigenvalues

v =
√

1− q

(

gn−1,0 −
Rn−1

0 −R0
n−1

1− q

)

w =
√

1− q

(

gn−1,0 −
L0
n−1 − Ln−1

0

1− q

)

.

(43)

The explicit form of these vectors is readily written, namely

〈w| = 〈n|

∞
∑

n=0

wn

√

[n]!
e
−

1

2
vw

q and |v〉 = e
−

1

2
vw

q

∞
∑

n=0

vn
√

[n]!
|n〉.

We thus conclude that the left and right boundary vectors are squeezed coherent
states of the shifted deformed annihilation and creation operators Dn−1 and D0,
associated with the non-zero boundary parameters xn−1 and x0, and with eigen-
values depending on the right and left boundary rates

(Rn−1
0 a0 −R0

n−1a
+
0 )|v〉 = A|v〉 = v|v〉

〈w|(L0
n−1a

+
0 − Ln−1

0 a) = 〈w|A+ = 〈w|w
(44)

where the eigenvalues v and w are given by the formulas in (43). The operators A
and A+ satisfy the same deformed commutation relations as a and a+, as was out-
lined in section 3, with the only difference that they are not Hermitian-conjugate.
However their conjugation property is consistent with the involution of the qua-
dratic algebra (4) which reflects the left-right symmetry of the model. From the
inverse linear maps, with Rn−1

0 L0
n−1 − Ln−1

0 R0
n−1 6= 0, we obtain

a0 =
L0
n−1

Rn−1
0 L0

n−1 − Ln−1
0 R0

n−1

A+
R0

n−1

Rn−1
0 L0

n−1 − Ln−1
0 R0

n−1

A+

a+0 =
Rn−1

0

Rn−1
0 L0

n−1 − Ln−1
0 R0

n−1

A+ +
Ln−1
0

Rn−1
0 L0

n−1 − Ln−1
0 R0

n−1

A

(45)
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with the help of which the mean values of the generators D0, Dn−1 and the rest
Dk for k = 1, 2, . . . , n− 2 are readily found

〈w|D0|v〉 =
1

gn−1,0(R
n−1
0 L0

n−1 − Ln−1
0 R0

n−1)

(

1

1− q
+

Rn−1
0 w + Ln−1

0 v
√
1− q

)

〈w|Dn−1|v〉 =
1

gn−1,0(R
n−1
0 L0

n−1 − Ln−1
0 R0

n−1)

(

1

1− q
+

R0
n−1w + L0

n−1v√
1− q

)

〈w|Dk|v〉 =
L0
k

Lk
0

〈w|D0|v〉 =
R0

k

Rk
0

〈w|D0|v〉. (46)

With these expressions at hand, it is easy to calculate the expectation value of
any monomial of the form 〈w|Ds1Ds2 · · ·DsL|v〉 (where Dsi = Dj for i =
1, 2, . . . , L, j = 0, 1, 2, . . . , n − 1), which enters the stationary probability dis-
tribution, the current, the correlation functions. One first makes use of the algebra
to bring all generators Dk for k = 1, 2, . . . , n−2 to the very right or to the very left,
which results in an expression of the expectation value as a power in D0 and Dn−1.
Then one writes the arbitrary power of D0, Dn−1 as a normally ordered product of
A and A+ to obtain, upon using the eigenvalue properties of the latter, an expres-
sion for the relevant physical quantity in terms of the probability-rate-dependent
boundary eigenvalues v and w.
We note that if the boundary processes are such that there are only incoming parti-
cles of (n−1)th-type at the left boundary and only outgoing (n−1)th-type particles
at the right boubdary, i.e., Ln−1

0 = R0
n−1 = 0 in (44), then the eigenstate equations

define the boundary vectors |v〉 and 〈w| as q-deformed coherent states. Using the
eigenvalue properties of the latter one can likewise obtain the physical quantities
of interest for the system. The value q 6= 0 corresponds to a partially asymmetric
while q = 0 to a totally asymmetric diffusion in the bulk of the n−1-type particle.
The deformed oscillator coherent states defined for 0 < q < 1 and for q = 0 pro-
vide a unified description of both the partially and the totally asymmetric hopping
of a given type of particle.
To summarize, we have applied the q-deformed squeezed states to obtain within
the matrix-product states approach a boundary problem solution to a multiparticle
(general n) open stochastic system of lattice Brownian motion.
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Abstract. Quantization of the electromagnetic field in non-stationary media
(linear with respect to E, with negative differential conductivity) is inves-
tigated. The dynamical invariants and statistical properties of the field are
found in such media. It is shown that in the eigenstates of linear dynami-
cal invariant, the Schrodinger uncertainty relation is minimized. The time
evolution of the tree independent second-order statistical moments (quantum
fluctuations: covariance cov(q,p), var(q) and var(p) ) are found out.

1. Introduction

The increasing use of energy as a result of the Industrial Revolution has brought
a number of serious problems. Understanding the process of photosynthesis will
play key role to solve these problems and to develop alternative energy sources in
two asspects

- producing alternative fuels (such as H2, biofuel etc.)
- producing directly Electricity using artificial photosynthesis in Dye-sensi-

tized solar cells.

In the first processes (photosynthesis) the solar light is transformed into chemi-
cal energy, saved in molecule adenosine triphosphate (ATP). Thus a universal
accumulator of energy is formed for widdely distributed biological processes [22].

∗Reprinted from Geometry, Integrability and Quantization 14 (2013) 37–47.
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During the process of photosynthesis [23], the ATP is formed from adenosine
diphosphate (ADP) and inorganic phosphate. Besides light this conversion re-
quires a donor of electrons as well as protons received from water.
The chemical energy stored in this “biological batery” (ATP) is used by plants to
synthesize carbohydrates from CO2 and H2O.
Similar and more simplified processes are observed at artificial photosynthesis
in Dye-Sensitized Solar Cells (DSSC), where the sun light energy absorbed by
Ruthenium-polypyridine dye and is transform in the electrical energy, like the
chlorophyll in green leaves. Absorbed photons create an excited state of the dye,
from which an electron is transported directly into the conduction band of the
porous TiO2 in the artificial cell (see also [7]).

2. Motivation for Our Approach

It is well known that electron transport in photosynthesis has Quantum Nature [15].
It is due to the tunneling effect of electron through the barrier, with the action of
light quanta. The electron is being tunneled from one carrier to another (starting
from chlorophyll molecule to acceptor molecule) with probability depending on
the width and height of the barrier. The probability decreases exponentially with
increasing the barrier’s size.
We are going to aproach only part of the photosynthesis problem, concerning the
creation of electrons and charge transport in photosensitive dyes (e.g., in chloro-
phyll and ruthenium-polypyridine dyes, at photosynthesis and artificial photosyn-
thesis respectively), using tools from quantum mechanics.
For this purpose we consider electron transport chain in thylakoid membrane (or
dye solution in DSSC) as a linear media with Negative Differential Conductivity
(NDC). The light interacts with dye molecule, excites electrons, which overcomes
the subsequent quantum potential barrier. This transfers electron from one mole-
cule carrier to an other carrier in the whole chain of electron transport.

3. Schrödinger Uncertainty Relation and Dynamical Invariants in
QM

The description of quantum systems is fundamental for understanding many prob-
lems in physics and particulary in chemistry. One of the most revolutionary conse-
quences that quantum mechanics bequeathed as a fundamental principle in physics
is the refusal of strong determinism. That is why the uncertainty relation plays fun-
damental role in this science. In 1930, a few years after Heisenberg, Schrödinger
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had generalized the famous Uncertainty Relation (UR) in quantum mechanics
(QM) [2, 16, 18]

(∆q)2(∆p)2 ≥
~
2

4
+ Cov2(q, p). (1)

The above inequality shows the general connection between all three independent
statistical moments of second order of two quantum variables q and p - the covari-
ance Cov(q, p)

Cov(q, p) =
1

2
〈qp+ pq〉 − 〈q〉〈p〉 (2)

and the variances (∆q)2 and (∆p)2 defined as particular case of covariance

(∆q)2 = Cov(q, q) respectively (∆p)2 = Cov(p, p). (3)

Canonical variables q̂ and p̂ satisfy the canonical commutation relations

[q̂, p̂] = i~ 1̂. (4)

In terms of the covariance matrix σM (q, p) [6], [10] the uncertainty relation (1)
takes the form

det[σM (q, p)] ≥
~
2

4
· (5)

Other important notions of QM are the dynamical invariants (integrals of motion)
Î . These are operators which do no depend on the time t. Using the definition of
total derivative in QM of certain quantum system with Hamiltonian Ĥ , the dynam-
ical invariants Î are defined as solutions to the equation [12]

dÎ

dt
=
∂Î

∂t
−

i

~
[Î , Ĥ] = 0. (6)

The canonical commutation relations (4) show that quadratic in q̂ and p̂ Hamil-
tonians admit linear in q̂ and p̂ dynamical invariants. In [14] a family of (non-
Hermitian) invariants Â for the general nonstationary quadratic Hamiltonian

Ĥ = a(t)p̂2 + b(t)(p̂q̂ + q̂p̂) + c(t)q̂2 + d(t)p̂+ e(t)q̂ + f(t) (7)

have been constructed in the form

Â(t) =

√

a

~

[

εp̂+
1

a

(

εb− ε̇−
ȧ

2a
ε

)

q̂

]

(8)

where ε is any solution of the second order equation (classical oscillator equation)

ε̈+Ω2(t)ε = 0. (9)

Actually Â†(t) and Â(t) are generalization of boson creation and annihilation oper-
ators â† and â of the stationary oscillator (with Ω = constant). The time-dependent



38 Andrey Angelow and Dimitar Trifonov

coefficients a(t), b(t) and c(t) in (7) establish the connection between the Hamil-
tonian Ĥ and the frequency Ω(t) of classical non-stationary harmonic oscillator

Ω2 = 4ac+ 2b
ȧ

a
+

ä

2a
−

3ȧ2

4a2
− 4b2 − 2ḃ. (10)

The linear part in the Hamiltonian (7) is not essential for the classical non-stationary
harmonic oscillator, so it is assumed that d(t) = e(t) = f(t) = 0.

The commutator [Â, Â†] is presented by Wronsky determinant W

[Â, Â†] =
i

2
(εε̇∗ − ε∗ε̇) ≡

i

2
W (11)

so that [Â, Â†] = 1̂ iff

ε = |ε| e
i
∫
t

0

dt
′

|ε(t′)|2 . (12)

4. Quantization of EM Field in Linear Media with Negative
Differential Conductivity

The Maxwell equations in non-stationary linear media have the form

B(r, t) = µ(t)H(r, t), D(r, t) = ε(t)E(r, t), j = σ(t)E (13)

divD = 0, rotH =
∂

∂t
D + σ(t)E

divB = 0, rotE =−
∂

∂t
B.

(14)

Note that ε(t) = εr(t)ε0 is the dielectric permittivity, and differs from the solution
ε(t) of classical oscillator equation (9).
A scheme was proposed for quantizing the damped light in conducting media [3]
(see references therein). We are going to apply the quantization not only for non-
stationary media (ε(t), µ(t) and σ(t)), but for a case of negative differential con-
ductivity. For convenience we will consider one dimension case (in x direction).
A linear and homogenous media could have some resistivity R (which is a positive
constant). There are some special cases, when the resistivity (respectively - the
conductivity) vary with the applied voltage. For example, this is the case with tun-
nel diodes, which are represented as over-dopped semiconductors with very narrow
p − n-junction, playing a role of quantum mechanical potential barrier [4, 5] (see
Fig. 1). One analytical expression [5] for such I-V characteristic is shown here

I =
U

R0
exp

[

−(
U

U0
)m
]

+ Is exp

[

U

ηUth

− 1

]

(15)

where R0, U0, Is, η and Uth are appropriate constants.
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Fig. 1. I-U characteristic of Fig. 2. Idealized I-U characteristic
device with negative differential and the first derivative of σ,
conductivity. σdiff < 0 for U1 < U < U2.

To escape the problems with quantization in such media, we consider a hypothetic
one, consisted of three different voltage domains, presenting the I = I(U) with
strait lines, as is shown on Fig. 2. This point of view is reasonable, because as
is seen from Fig. 1, in all three domains there exists smaller sections, where the
currents I = I(U) could be presented approximately as strait lines. It is obvious
that in the first and in the third domains, the secondary quantization could be solved
in standard way (see for example [8,9,21]). Here we focus our attention mainly on
the interesting second domain, which is called the regime with negative differential
resistance (we do not take into account the transitions between domains, and leave
this problem for future investigations). For the domain with negative differential
conductivity around inflex point we always could apply linear approach. So, for
our simplified model we have

σ = const > 0 but σdiff =
dσ(U)

dU
< 0 for U1 < U < U2. (16)

For this domain, where the differential conductivity is negative, we are going to
find analytical solution for this quantum problem, when the condition (16) is satis-
fied also. Applying the Coulomb gauge, one can define vectors fields as

B = rotA, E = −
∂A

∂t
(17)

and from Maxwell equations (14) we obtain the equation for A(r, t)

∇2A− µ(σ + ε̇)
∂A

∂t
− εµ

∂2A

∂t2
= 0 (18)
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As usual (see e.g. the books [11, 17, 24]) we expand vector potential A(r, t) in
terms of mode functions ul(r) = el,ξul,ξ(r)

A(r, t) =
∑

l,ξ

el,ξul,ξ(r)ql,ξ(t) (19)

which satisfy the Helmholtz equation

(

∇2 +
ω2
0,l

c2

)

ul,ξ(r) = 0. (20)

From Maxwell equations (14) it follows that (in case of linear media (13)) the time-
dependent factors ql are to obey the following linear equation (furthermore, unless
otherwise stated, we suppress the polarization index ξ)

∂2ql
∂t2

+
σ(t) + ε̇(t)

ε(t)

∂ql
∂t

+ ω2
l (t)ql = 0, ω2

l (t) =
ω2
0,l

c2ε(t)µ(t)
· (21)

One can see that the equation (21) could be obtained from the classical Hamilton
equation with Hamilton function

Hl =
1

2

[

1

ε0
e
−

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
p2l + ε0ω

2
l (t)e

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
q2l

]

(22)

Introducing the canonical operators q− > q̂l and p− > p̂l, which obey the com-
mutation relation (4) we receive for the total Hamiltonian of the EMF as a sum
over all modes [3]

Ĥ =
∑

l

[

1

2ε0
e
−

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
p̂2l +

ε0ω
2
l (t)

2
e
∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
q̂2l

]

≡
∑

l

Ĥl. (23)

It can be seeing that time-dependent coefficients in equation (23) are

a(t) =
1

2ε0
e
−

∫
t

0

σ(t)+ε̇(t)

ε(t)
dt
, b(t) = 0, c(t) =

ε0ω
2
l (t)

2
e
∫
t

0

σ(t)+ε̇(t)

ε(t)
dt

(24)
and for the frequency Ωl(t) of the non-stationary harmonic oscillator (10) we get

Ω2
l (t) = ω2

l (t)−
1

2

d

dt

(

σ(t) + ε̇(t)

ε(t)

)

−
1

4

(

σ(t) + ε̇(t)

ε(t)

)2

. (25)

In this case the invariants that satisfy the canonical boson relation [Â, Â†] = 1̂ are

Âl =
1

√
2~ε0

e
−

1

2

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′

×

[

εlp̂l − ε0e
∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
(

ε̇l −
1

2

σ(t) + ε̇(t)

ε(t)
εl

)

q̂l

]

. (26)
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The linear invariants Âl and the quadratic ones Â†

l Âl have the following eigen-
functions [14] (ψαl

(ql, t) = 〈ql|αl; t〉, ψnl
(ql, t) = 〈ql|nl; t〉

ψαl
(ql, t) = ψ0(ql, t) exp

[

√

2

a~

αl

εl
ql −

ε∗l
2εl
α2
l −

1

2
|αl|

2

]

(27)

ψnl
(ql, t) = ψ0(ql, t)

(ε∗l /2εl)
nl/2

√
nl!

Hnl
(xl), xl =

ql
|εl|

√
a

(28)

with eigenvalues αl and nl respectively. Here Hn(x) are Hermite polynomials and
ψ0(ql, t) are the ground state wave functions (Âlψ0 = 0)

ψ0(ql, t) =
(

εl(πa~)
1

2

)−
1

2

exp

[

i

2a~

(

ε̇l
εl

+
ȧ

2a

)

q2l

]

. (29)

These time-dependent wave functions are normalized solutions to the Schrödinger
equation with Hamiltonian Ĥl, equation (23). Since Â(t) and Â†

l (t)Âl(t) are dy-
namical invariant, the eigenvalues αl and nl are constant in time.
The system of |αl; t〉 is overcomplete in the one mode Hilbert space Hl (the set of
|nl; t〉 being complete)

1

π

∫

|αl; t〉〈t;αl|d
2αl =

∑

nl

|nl; t〉〈t;nl| = 1̂l. (30)

These states |αl; t〉 minimize the general uncertainty relation of Schrödinger

(∆q)2(∆p)2 =
~
2

4
+ Cov2(q, p). (31)

According to the terminology of references [13,14] the states |αl; t〉 may be called
generalized Coherent States (CS) of nonstationary system with Hamiltonian Ĥl,
equation (23). For the purpose of this paper and to make it more readable for
physicist-experimentalists, biologist etc. we will call the states minimizing relation
(31) Schrödinger Minimum Uncertainty States (SMUS) as it is done in [19].
Because the Hamiltonian Ĥ , equation (23), is a sum over l, the SMUS for EM
field with finite number of modes are product over l of one mode SMUS |αl; t〉.
The vector potential operator takes the form

Â(r, t) =
∑

l

ul(r)q̂l. (32)

Note that it differs from linear invariants Â(t), and it is denoted here in bold face.
Replacing it in (17) one obtains the quantized electric and magnetic fields
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Ê(r, t) = −
1

ε0
e
−

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
∑

l

ul(r)p̂l (33)

B̂(r, t) = e
−

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
∑

l

∇× ul(r)q̂l. (34)

Using the time derivatives of operators q̂l, p̂l of the form

dôl
dt

= −
i

~
[ôl, Ĥ] (35)

we check that all Maxwell equations (14) are satisfied by operator fields Ê, D̂ =

εÊ, Ĥ and B̂ = µĤ .
Evolution of second order statistical moments in SMUS. All three quantum-
mechanical statistical moments for canonical operators q̂l and p̂l are defined in the
evolved SMUS |αl; t〉. Using the general formulae [20] we find the variances

(∆ql)
2
αl

=
~ε−1

0 e
−

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′

2
ρ2l , ρl = |εl(t)|

(36)

(∆pl)
2
αl

=
~

ε−1
0 e

−
∫
t

0

σ(t′)+ε̇(t′)

ε(t′)
dt′

[

1

2ρ2l
+

(

ρ̇l(t)−
1

2

σ(t) + ε̇(t)

ε(t)
ρl

)2
]

.

From the general formula derived in [1], we obtain the covariance Cov(q, p) in
terms of the negative differential conductivity

Cov(ql, pl)αl
= −

~

2
ρl

(

ρ̇l −
1

2

σ(t) + ε̇(t)

ε(t)
ρl

)

. (37)

Thus, we find the three statistical moments ((∆ql)2, (∆pl)2 and Cov(q, p)) in the
case of media with negative differential conductivity.

5. Vector Operators for EM Field and Their Statistical Properties

To express the statistical properties of vector operators Ê(r, t) and B̂(r, t) for
EM field, it is convenient to present the Hermitian operators q̂, p̂ in terms of the
invariants Â, Â†. Taking into account (26) we get the following expressions

q̂l =

(

~

2ε0

)1/2

e
−

1

2

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
(

−iεl(t)Â
†

l (t) + iε∗l (t)Âl(t)
)

(38)
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p̂l =

(

~ε0
2

)1/2

e
1

2

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′

×

(

−i(ε̇l −
1

2

σ(t) + ε̇(t)

ε(t)
εl)Â

†

l + i(ε̇∗l −
1

2

σ(t) + ε̇(t)

ε(t)
ε∗l )Âl

)

. (39)

We shall consider the case of periodic boundary conditions with complex mode
functions u(±)

l,ξ (r) = V −1/2el,ξ exp(±ikl · r) [24], where el,ξ is the polarization
vector of mode l, with wavevector kl. With these modes the vector potential oper-
ator, which obeys the equation (18) takes the following form

Â(r, t) =

√

~

2ε0
e
−

1

2

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
∑

l,ξ

el,ξ

[

u∗l,ξ(r)εlÂl,ξ(t) + h.c.
]

. (40)

Replacing the vector potential operator Â(r, t) in the relations (17) we receive
vector operator for EM field in the form

Ê(r, t) =

√

~

2ε0
e
−

1

2

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′

×
∑

l,ξ

el,ξ

[(

1

2

σ(t) + ε̇(t)

ε(t)
εl − ε̇l

)

u∗l,ξ(r)Âl,ξ(t) + h.c.

]

(41)

B̂(r, t) = i

√

~

2ε0
e
−

1

2

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
∑

l,ξ

kl×el,ξ

[

u∗l,ξ(r)εlÂl,ξ(t)− h.c.
]

. (42)

The commutators between the j and m components of Êl(r, t) and B̂l(r, t) are
C-numbers, vanishing for j = m

[Êl,j(r, t), B̂l,m(r, t)] = i
~

ε0V
e
−

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′ (43)

×
∑

ξ

el,ξ,j(kl × el,ξ)j Re

(

ε̇lε
∗

l − |εl|
2 1

2

σ(t) + ε̇(t)

ε(t)

)

δjm.

The three second moments are found as

(∆El)
2
α =

~

2ε0V
e
−

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′
∣

∣

∣

∣

1

2

σ(t) + ε̇(t)

ε(t)
|εl|

2 − ε̇l

∣

∣

∣

∣

2

(∆Bl)
2
α = k2l

~

2ε0V
e
−

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′

|εl|
2 (44)

Cov(El, Bl)α = −kl
~

2ε0V
e
−

∫
t

0

σ(t
′
)+ε̇(t

′
)

ε(t′)
dt′

Im

(

σ(t) + ε̇(t)

2ε(t)
|εl|

2 − ε̇lε
∗

l

)
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(note also the presence of conductivity σ(t) (with σdiff < 0, which may vary in
time also) in the expressions of all the above averages).
Schrödinger Uncertainty Relation for the j and m components of Êl(r, t) and
B̂l(r, t) in SMUS take the form

(∆El)
2
α (∆Bl)

2
α − Cov2(El, Bl)α =

~
2

4
|〈[El, Bl]〉α|

2 . (45)

Thus the time-evolved SMUS |αl; t〉 in nonstationary and/or conductive media are
minimizing uncertainty states with respect to the photon ladder operator quadra-
tures q̂l, p̂l, and with respect to the electric and magnetic field components as
well. The time evolution of these states can exhibit ql-pl and El-Bl covariance
and squeezing.

Conclusion

Quantization of the electromagnetic field in non-stationary media (linear with re-
spect to E and arbitrary with respect to time t) is investigated. The model presented
here allow to be investigated and to perform secondary quantization in media with
negative differential conductivity also. The dynamical invariants and statistical
properties of the field are found in such media. It is shown that in the eigenstates of
linear dynamical invariant, the Schrodinger uncertainty relation is minimized. The
time evolution of the tree independent second-order statistical moments (quantum
fluctuations: covariance cov(q,p), var(q) and var(p) ) are found out. The model de-
veloped here, could be involved in quantum-mechanical explanation of electrons
transport, when the electron jumps from one dye molecule to an other, overcom-
ing the potential barrier between them. Thus, the tunnel effect, leading to negative
differential conductivity, play essential role not only in chlorophyll, but in electron
transport in ruthenium-polypyridine dyes at artificial photosynthesis, also.
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Abstract. Various many-body models are treated, which describe N points
confined to move on a plane circle. Their Newtonian equations of motion
(accelerations equal forces) are integrable, i.e., they allow the explicit exhi-
bition of N constants of motion in terms of the dependent variables and their
time-derivatives. Some of these models are moreover solvable by purely al-
gebraic operations, by (explicitly performable) quadratures and, finally, by
functional inversions. The techniques to manufacture these models are not
new, but some of these models are themselves new and others are reinterpre-
tations of known models.

1. Introduction

The investigation of the time evolution of an arbitrary number N of point-particles
the dynamics of which is determined by Newtonian equations of motion (accel-
erations equal forces) is of course a fundamental topic in physics and mathemat-
ics. The identification in this context of models amenable to exact treatments is
a major area of research in mathematical physics and applied mathematics, hav-
ing a centuries-old history and having been boosted by developments in the last
few decades, which also impacted several areas of physics beyond mechanics and
many fields of pure mathematics. An interesting related development which is
now becoming of interest is the study of such models in which the motion is re-
stricted to lie on an a priori prescribed manifold: see for instance [1, 5, 6, 8]. In
this paper we make some initial, simple steps in this direction by focussing on

∗Reprinted from J. Geom. Symmetry Phys. 30 (2013) 1–18.
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various many-body models describing the evolution of N points whose positions
on a plane are characterized by N unit two-vectors, thereby forcing their motion
to be confined to a circle of unit radius centered at the origin. All these models
are characterized by Newtonian equations of motion: accelerations equal forces,
which in these models are of one-body, two-body or, in some cases, many-body
type, and might depend on the velocities of the moving particles in addition to
their positions. All these models are autonomous: their equations of motion are
time-independent. They are all amenable to exact treatments: in particular they all
allow the explicit identification of N constants of motion in terms of the N depen-
dent variables and their N time-derivatives (for terminological simplicity we here-
after call such models integrable). In some cases their initial-value problems can
be moreover solved by (explicitly performable) quadratures and subsequent func-
tional inversions, preceded by purely algebraic operations, such as solving systems
of linear constant-coefficients ODEs, or (equivalently) evaluating the N eigenval-
ues of known (time-dependent) N × N matrices or (equivalently) the N zeros of
known (time-dependent) polynomials of degree N (for terminological simplicity
we hereafter call such models solvable). The techniques to manufacture these mod-
els are not new. Some of these models are themselves new, others are essentially
reinterpretations of known models. The dynamics of these models are not analyzed
in detail; but in some cases the main features of their behavior are ascertained, for
instance for isochronous models the time evolution of which is isochronous (i.e.,
completely periodic with a fixed period independent of the initial data), or for mod-
els all motions of which are multiply periodic.

The equations of motion of the N -body problems treated below are listed with
minimal comments in the following Section 2, to facilitate the hasty reader wish-
ing to get an immediate idea of the findings reported in this paper. These results
are then proven in the subsequent Section 3. The titles of its subsections indicate
case-by-case the techniques employed to arrive at the relevant results. Finally, a
terse Section 4 entitled “Outlook” outlines possible developments, to be eventually
reported in other papers. Some mathematical details are confined to two Appen-
dices.

2. Many-Body Models on a Circle Amenable to Exact Treatments

In the following subsections we display, with minimal comments, various N -body
problems of Newtonian type (accelerations equal forces) describing motions on a
circle and amenable to exact treatments (detailed in the following Section 3). But
we provide firstly a terse subsection devoted to notation.
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2.1. Notations

The models under consideration generally feature N points moving in a plane. We
identify these N points by three-vectors ~rn, n = 1, 2, ..., N for which we use the
following three-dimensional notation:

~rn ≡ (cos θn, sin θn, 0) ≡ (xn, yn, 0) . (1)

Hereafter N is an arbitrary positive integer (generally N ≥ 2) and indices such
as n, m, ` run over the positive integers from 1 to N (unless otherwise explicitly
indicated).
Clearly these vectors ~rn have unit length

~rn · ~rn = 1. (2a)

Throughout this paper the dot sandwiched among two vectors denotes the standard
scalar product, so that for instance

~rn · ~rm = cos (θn − θm) . (2b)

It is moreover convenient to introduce the unit vector ẑ orthogonal to the xy-plane,

ẑ ≡ (0, 0, 1) (3)

and to denote by the “wedge” symbol ∧ the standard (three-dimensional) vector
product, so that

ẑ ∧ ~rn = −~rn ∧ ẑ = (− sin θn, cos θn, 0) (4a)

(ẑ ∧ ~rm) · ~rn = (~rm ∧ ~rn) · ẑ = sin (θn − θm) . (4b)

Hereafter we deal with time-dependent vectors

~rn (t) ≡ (cos θn (t) , sin θn (t) , 0) (5)

and superimposed dots indicate derivatives with respect to the time variable t so
that, for instance

~̇rn = θ̇n (− sin θn, cos θn, 0) = θ̇n ẑ ∧ ~rn (6a)

~̈rn= θ̈n(− sin θn, cos θn, 0)− θ̇2n(cos θn, sin θn, 0) = θ̈n ẑ ∧ ~rn − θ̇2n ~rn. (6b)

Note that here we omitted, for notational simplicity, to indicate explicitly the time-
dependence of the quantities appearing in these N equations; we will often do this
below without repeating this warning.
Several other identities are reported in Appendix A: they are useful to obtain the
results reported below, but are not necessary to understand the findings reported in
the following subsections.



Solvable and/or Integrable Many-Body Models on a Circle 49

2.2. Two Models Obtained via Techniques of Generalized Lagrangian
Interpolation

First model

µn ~̈rn = −µn

(

~̇rn · ~̇rn
)

~rn

+ẑ ∧ ~rn







[

µn

(

~̇rn · ~̇rn
)

+ ηn

(

~rn ∧ ~̇rn

)

· ẑ
]

N
∑

`=1, `6=n

[

(~r` · ~rn)
(~r` ∧ ~rn) · ẑ

]

+
[(

~rn ∧ ~̇rn

)

· ẑ
]

N
∑

`=1, 6̀=n





σn (~r)

σ` (~r)

µ`

(

~r` ∧ ~̇r`

)

· ẑ + η`

(~r` ∧ ~rn) · ẑ











(7a)

σn (~r) =
N
∏

`=1, 6̀=n

[(~r` ∧ ~rn) · ẑ] . (7b)

Second model

µn ~̈rn = −µn

(

~̇rn · ~̇rn
)

~rn

+
N
∑

`=1, 6̀=n

{

[(~r` ∧ ~rn) · ẑ]−1
{[(

~rn ∧ ~̇rn

)

· ẑ
][

µ`

(

~r` ∧ ~̇r`

)

· ẑ + η`

]

+
[

µn

(

~rn ∧ ~̇rn

)

· ẑ + ηn

][(

~r` ∧ ~̇r`

)

· ẑ
]}

(~r` ∧ ~rn)
}

. (8)

In these Newtonian equations µn and ηn are 2N arbitrary constants, and for the rest
of the notation see Subsection 2.1. Note in particular the property (2a), implying
that the N vectors ~rn have unit modulus, hence that the N points whose time
evolution is determined by these equations of motion are constrained to move on
the circle of unit radius centered at the origin of the Cartesian plane.
These equations of motion are covariant, implying that the corresponding N -body
problems are rotation-invariant.
These two N -body problems are both integrable: they possess N constants of
motion, the explicit expressions of which in terms of the vectors ~rn and their time-
derivatives ~̇rn are displayed in the following Subsection 3.1. The equations of
motion of the first, (7a), of these two models feature many-body forces due to the
presence in their right-hand (“forces”) sides of the quantities σn (~r), see (7b), but
their initial-value problem is solvable by purely algebraic operations. Nevertheless
their time evolution can be quite complicated (detailed analyses are not performed
in this paper. The fact that solvable models can exhibit quite complicated dynamics
is of course well known, see for instance the papers where a three-body model is
studied the time evolution of which is highly nontrivial in spite of the fact that
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its Aristotelian equations of motion–velocity equal forces–are quite neat and that
its initial-value problem can be reduced to solving a single algebraic equation [3],
[4],[7]).

2.3. Two Solvable Models Obtained via a Reinterpretation of Known Models

The first model is merely a transcription of the solvableSutherland model, see Sub-
section 3.2. It reads as follows

~̈rn = −
(

~̇rn · ~̇rn
)

~rn + g2 ẑ ∧ ~rn

N
∑

`=1, `6=n

{

~rn · ~r`
[(~r` ∧ ~rn) · ẑ]3

}

. (9)

Here g is an arbitrary “coupling constant”, and the rest of the notation is, we trust,
clear (see Subsection 2.1).
The second model is also merely a transcription of a well-known solvable model
(of goldfish type), see Subsection 3.2. It reads as follows

~̈rn = −
(

~̇rn · ~̇rn
)

~rn + g0 ẑ ∧ ~rn + g1 ~̇rn
(10)

+ẑ ∧ ~rn

N
∑

`=1, `6=n







2 ~̇rn · ~̇r` + g2

[(

~̇rn ∧ ~r` + ~̇r` ∧ ~rn

)

· ẑ
]

+ g3 ~rn · ~r`
(~r` ∧ ~rn) · ẑ







.

Here the four constants g0, g1, g2 and g3 are arbitrary constants, and the rest of the
notation is, we trust, clear (see Subsection 2.1).
These equations of motion are covariant, implying that the corresponding N -body
problems are rotation-invariant.

2.4. Two N -body Problems on a Circle Obtained by Changes of Dependent
Variables

These two solvable models are merely transcriptions of two well-known one-dimen-
sional solvable models, see Subsection 3.3. The first model reads as follows

~̈rn = −
(

~̇rn · ~̇rn
)

~rn − ẑ ∧ ~rn

{

2

[

(

~̇rn · ~̇rn
) yn

xn

]

+4 xn yn − x5n

N
∑

`=1, `6=n

[

y`
(~r` ∧ ~rn) · ẑ

]3






. (11a)

Here xn ≡ cos θn and yn ≡ sin θn are the two Cartesian components in the plane
of the vector ~rn, see (1).
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This model is isochronous with period π

~rn (t± π) = ~rn (t) . (11b)

The second model reads as follows

~̈rn = −
(

~̇rn · ~̇rn
)

~rn − ẑ ∧ ~rn

{

2

[

(

~̇rn · ~̇rn
) yn

xn

]

+xn yn − xn

N
∑

`=1, `6=n

{

2 + x2n x2`
x` [(~r` ∧ ~rn) · ẑ]

}







. (12)

Here xn ≡ cos θn and yn ≡ sin θn are again the two Cartesian components in the
plane of the vector ~rn, see (1).
All solutions of this model are multiply periodic, see Subsection 3.3.
Note that–in contrast to the equations of motions reported in the two preceding
subsections–those displayed herein, (11a) and (12), are not written in covariant
fashion, i.e., without any explicit appearance of the Cartesian components xn ≡
cos θn and yn ≡ sin θn of the vector ~rn. Indeed these equations of motion are not
rotation-invariant, or equivalently, they are not invariant for translations along the
circle (on which the motions take place due to the constraint (2a)).

3. Proofs

In the following subsections we substantiate the findings reported in the preceding
Section 2.

3.1. Solvable and Integrable Models on the Circle Manufactured via
Techniques of Generalized Lagrangian Interpolation

In this subsection we employ the technique to manufacture many-body models
amenable to exact treatments introduced in [2] (see in particular Chapter 3 of this
book, entitled “N -body problems treatable via techniques of exact Lagrangian in-
terpolation in spaces of one or more dimensions”). We begin with a terse review
of this method, in the specific case of one-dimensional space with an appropriate
choice of the set of “seeds” (namely, of the N functions providing the point of
departure for the generalized Lagrangian interpolation approach).
The set of seeds we conveniently take as basis for our treatment are the N functions

{sn (θ)}Nn=1 = {exp [i (2 n−N − 1) θ]}Nn=1

= {exp [i (1−N) θ] , exp [i (3−N) θ] , ...

... exp [i (N − 3) θ] , exp [i (N − 1) θ]}. (13)
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Remark 1. These exponential functions with imaginary argument are complex,
but clearly this set of seeds could be replaced without significant changes by an
equivalent set featuring instead sines and cosines of real arguments. The use of
exponentials merely facilitates some of the following developments. Likewise the
factor two in the argument of these functions has been introduced merely to yield
neater versions of the equations of motions that will be obtained, see below. The
fact that these seeds are invariant under the transformation θ ⇒ θ + 2π suggests
to interpret the variable θ as an angle in the plane.

We then consider a function f (θ) representable as a linear superposition of these
N seeds

f (θ) =
N
∑

n=1

[hn sn (θ)] (14a)

where the N coefficients hn are a priori arbitrary numbers. And we denote with
fn the N values that this function takes at the N (arbitrarily assigned) “nodes”
θ = θn

fn = f (θn) (14b)
and we display the representation of this function in terms of these N values, via
the (“generalized Lagrangian interpolation”) formula

f (θ) =

N
∑

n=1

[

fn q(n) (θ |θ )
]

. (14c)

The N “interpolational functions” q(n) (θ |θ ) depend on the variable θ and on the
N nodes θn (hence on the N -vector having these nodes as its components, here-
after denoted as θ ≡ (θ1, θ2, ..., θN )). They are themselves linear superpositions
of the seeds sn (θ), to insure consistency among (14c) and (14a); and they feature
the property

q(n) (θm |θ ) = δnm (15)
to insure consistency among (14c) and (14b) (here and hereafter δnm is the Kro-
necker symbol: δnm = 1 if n = m, δnm = 0 if n 6= m).
The explicit representation of these interpolational functions q(n) (θ |θ ) in terms
of the N seeds sn (θ) and the N nodes θn reads [2]

q(n)(θ |θ ) = ∆(θ1, . . . , θn−1, θ, θn+1, . . . , θN )

∆(θ1, . . . , θN )
(16a)

where

∆(θ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

s1(θ1) s2(θ1) . . . sN (θ1)
s1(θ2) s2(θ2) . . . sN (θ2)

...
...

. . .
...

s1(θN ) s2(θN ) . . . sN (θN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (16b)
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This determinant–with the set of seeds (13)–is of Vandermonde type hence it can
be explicitly evaluated, yielding for the interpolational functions the expression

q(n) (θ |θ ) = s1 (θ − θn)
∏N

`=1, 6̀=n

[

exp (2 i θ)− exp (2 i θ`)

exp (2 i θn)− exp (2 i θ`)

]

. (17)

The next step is to introduce the time variable t. As in [2], we assume hereafter
that the N seeds sn (θ) are time-independent. We moreover assume the function
f (θ) to be also time-independent (thereby simplifying the more general treatment
of [2]). A time-dependence is only introduced for the nodes θn ≡ θn (t). Indeed
they shall be the dependent variables of the dynamical systems we manufacture.
Of course the fact that the nodes θn (t) evolve over time entails that the values fn
taken by the function f (θ) at these nodes (see (14b)) also evolve over time

fn ≡ fn (t) = f [θn (t)] . (18)

We then posit a convenient relation among the time evolution of the N nodes θn (t)
and the time evolution of the N quantities fn (t), by setting

fn (t) = ρn [θ (t)] θ̇n (t) + γn [θ (t)] . (19)

Here we introduced the 2N functions ρn (θ) and γn (θ) of the N nodes θn, that
will be assigned later at our convenience (but note that we forsake–again, for
simplicity–the possibility to assign an explicit time-dependence to these functions,
in addition to their dependence on the N nodes).
The next step is to ascertain the time dependence of the N nodes θn ≡ θn (t)
implied by these assignments. To this end we time-differentiate the relation (19),
getting the following expressions for the second time-derivatives of the N nodes
θn ≡ θn (t)

ρn (θ) θ̈n = ḟn −
N
∑

m=1

{[

∂ γn (θ)

∂ θm
+

∂ ρn (θ)

∂ θm
θ̇n

]

θ̇m

}

. (20)

Our next step is to evaluate the quantity ḟn, which (see (18)) reads

ḟn =
∂ f (θn)

∂ θn
θ̇n. (21)

To evaluate this quantity we can use the finite-dimensional representation of the
differential operator, yielding (for functions which are linear superpositions of the
seeds sn (θ), see (14)), the exact formula [2]

∂ f (θn)

∂ θn
=

N
∑

m=1

[Dnm (θ) fm] (22a)

with the N ×N matrix D defined componentwise as follows [2]
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Dnm (θ) =
∂ q(m)(θ |θ )

∂ θ
evaluated at θ = θn (22b)

hence in our case (see (13) and (16)) reading

Dnm (θ) = δnm

N
∑

`=1, `6=n

cot (θn − θ`) +
σn (θ)

σm (θ)

1− δnm
sin (θn − θm)

(23a)

σn (θ) =
N
∏

`=1, `6=n

[sin (θn − θ`)] . (23b)

Note that this definition coincides, via (4b), with (7b).
We therefore conclude that system (20) yields the following set of N Newtonian
equations of motion for the dependent variables θn ≡ θn (t)

ρn (θ) θ̈n = θ̇n

[

ρn (θ) θ̇n + γn (θ)
]

N
∑

`=1, `6=n

[cot (θn − θ`)]

+θ̇n

N
∑

`=1, `6=n







σn (θ)

σ` (θ)

[

ρ` (θ) θ̇` + γ` (θ)
]

sin (θn − θ`)







(24)

−
N
∑

m=1

{[

∂ ρn (θ)

∂ θm
θ̇n +

∂ γn (θ)

∂ θm

]

θ̇m

}

.

Of course to obtain this system of N second-order ODEs we also used (19).
Let us now emphasize that, as a consequence of the way these N -body problems
have been manufactured, they are integrable. It is indeed plain that the time in-
dependence of the function f (θ) entails (via (14a), (14b) and (19)) the relations

N
∑

m=1

{hm sm [θn (t)]} = ρn [θ (t)] θ̇n (t) + γn [θ (t)] . (25a)

Here we have displayed the time-dependence of the various quantities, in order
to emphasize the time-independence of the N coefficients hm, which can actually
be evaluated by solving this system of N linear equations, thereby obtaining (via
(16)) the following formulas

hm = q(m) (ϑm |θ ) , ϑm ≡
i log

[

ρm (θ) θ̇m + γm (θ)
]

2m−N − 1
(25b)

where of course the N nodes θm ≡ θm (t) and their N time derivatives θ̇m ≡
θ̇m (t) can be evaluated at any arbitrary time t. It is thus plain that the N -body sys-
tems (25) are integrable for any arbitrary assignment of the 2N functions ρm (θ)
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and γm (θ) of the N dependent variables θn, with these N quantities hm providing
N constants of motion given by explicit (generally nontrivial) expressions in terms
of the N nodes θn and their N time-derivatives θ̇n.
We are still free to assign the 2N functions ρn (θ) and γn (θ) . There are two natural
choices.
The first one reads simply

ρn (θ) = µn, γn (θ) = ηn (26)

with µn and ηn arbitrary constant parameters. It clearly yields (see (25)) an N -
body system characterized by the following set of Newtonian equations of motion

µn θ̈n = θ̇n

(

µn θ̇n + ηn

)

N
∑

`=1, `6=n

[cot (θn − θ`)]

(27)

+θ̇n

N
∑

`=1, 6̀=n





σn (θ)

σ` (θ)

(

µ` θ̇` + η`

)

sin (θn − θ`)



 .

Here the functions σn (θ) of the N nodes θm are of course defined by (23b).
The second assignment of the 2N functions ρn (θ) and γn (θ) is suggested by the
structure of system (25). It reads

ρn (θ) = µn σn (θ) , γn (θ) = ηn σn (θ) (28)

where again µn and ηn are arbitrary constant parameters and the functions σn (θ)
are defined as above, see (23b), implying (by logarithmic differentiation)

∂γn (θ)

∂θm
= γn (θ)







δnm

N
∑

`=1, 6̀=n

[cot (θn − θ`)]− (1− δnm) cot (θn − θm)







(29a)
and likewise

∂ρn (θ)

∂θm
= ρn (θ)







δnm

N
∑

`=1, 6̀=n

[cot (θn − θ`)]− (1− δnm) cot (θn − θm)







.

(29b)
Thereby the N -body system gets characterized by the following, simpler set of
Newtonian equations of motion

µnθ̈n =
N
∑

`=1, 6̀=n





θ̇n

(

µ`θ̇` + η`

)

+
(

µnθ̇n + ηn

)

θ̇` cos (θn − θ`)

sin (θn − θ`)



 . (30)

The differences among these two N -body systems, (28) and (30), deserve to be em-
phasized: the N -body model (28) involves many-body forces, due to the presence
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of the functions σn (θ) and σ` (θ) in its right-hand (forces) side; while the N -body
model (30) only involves two-body forces. Both systems can be integrated once,
corresponding to the transition from their N second-order Newtonian equations of
motion to the corresponding N first-order ODEs (25a). On the other hand, as we
show below, only the first of these two integrable systems is solvable.
Indeed, for the first system (but not for the second!), the N first-order ODEs (25a)
are uncoupled, reading simply, via (26)

µn θ̇n = −ηn +

N
∑

m=1

[hm sm (θn)] (31a)

or, equivalently (see (13))

µn exp [(N + 1) i θn] θ̇n = −ηn exp [(N + 1) i θn] +
N
∑

m=1

[hm exp (2m i θn)]

(31b)
where the N quantities hn are explicitly known in terms of the 2N initial data
θn (0), θ̇n (0) (via (25b), (26) and (17), see Appendix B).
These first-order ODEs can be integrated, we confine the relevant developments to
Appendix B.
Although the technique to manufacture these two solvable and integrable N -body
problems, (28) and (30), is not new [2], these models are, to the best of our knowl-
edge, themselves new. And therefore a detailed discussion of the actual behavior of
these systems has not yet been done. In the present paper we limit our considera-
tion to pointing out how these models can be reformulated to describe the evolution
of N points whose positions on a plane are characterized by N unit two-vectors
~rn (t), see the notation introduced in Subsection 2.1. To this end one utilizes the
formulas (6b), (2b), (4b) and the relevant ones among those conveniently collected
in Appendix A. And it is plain that one thereby obtains the two models (7) and (8).

3.2. Solvable Models on the Circle Manufactured by Reinterpreting Known
Solvable Models

In this section we tersely indicate how to obtain the two models (9) and (11).
The first model obtains from the N -body system characterized by the following
Newtonian equations of motion (with velocity-independent two-body forces)

θ̈n = g2
N
∑

`=1, `6=n

[

cos (θn − θ`)

sin3 (θn − θ`)

]

. (32)

Here g is an arbitrary “coupling constant”, and the rest of the notation is, we trust,
clear.
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This is a well-known solvable many-body problem, generally associated with the
name of Bill Sutherland, who was the first to show the possibility to treat this N -
body problem by exact methods (originally in a quantal context [10], [11]). Its
treatment in a classical (Hamiltonian) context is provided in several textbooks, see
for instance [9] [2] [12].
It is plain that the model (9) is merely the transcription of this model via the nota-
tion of Subsection 2.1.
The second model obtains from the N -body system characterized by the following
Newtonian equations of motion (with velocity-dependent one-body and two-body
forces)

θ̈n = g0 + g1θ̇n +
N
∑

`=1, 6̀=n

{[

2θ̇nθ̇` + g2

(

θ̇n + θ̇`

)

+ g3

]

cot (θn − θ`)
}

. (33)

Here g0, g1, g2 and g3 are 4 arbitrary coupling constants, and we again trust the
rest of the notation to be clear.
This is also a well known solvable model, see for instance equation (2.3.5-12) on
page 199 of [2].
And it is again plain that the model (11) is merely the transcription of this model
via the notation of Subsection 2.1 and Appendix A.

3.3. How to Manufacture N -Body Problems with Angles as Dependent
Variables

In the preceding subsection we have shown how certain N -body models with de-
pendent variables naturally interpretable as angles can be reformulated as N -body
models describing the time evolution on a plane of particles constrained to move
on a circle. In this subsection we indicate how, via a simple change of dependent
variables, essentially any N -body model can be reformulated so that its dependent
variables can be interpreted as angles, hence subsequently it can also be reformu-
lated (in fact in many ways) so that it describes the time evolution of particles
constrained to move on a plane circle.
The trick to achieve this goal is quite elementary and general; we illustrate it below
via two examples.
Consider an N -body model in which the positions of the N point-particles–moving
in one-dimensional space–are identified by N coordinates zn ≡ zn (t) , and per-
form the change of dependent variables by positing, say

zn (t) = tan [θn (t)] . (34)
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Remark 2. Of course this assignment defines θn (t) only mod (π) and clearly
many other assignments could be instead made–different but having an analogous
effect, such as zn = 1/ sin (2θn), or zn = tan3 θn, etc.

In the first example we take as point of departure the N -body problem character-
ized by the Newtonian equations of motion

z̈n = −4 zn + g2
N
∑

`=1, `6=n

[

(zn − z`)
−3

]

. (35a)

Here g is an arbitrary (real) coupling constant. This is a well-known solvable model
(see for instance [2]); it is isochronous, all its solutions being completely periodic
with period π

zn (t± π) = zn (t) . (35b)

Via the change of dependent variables (34) the equations of motion (35a) become
(as the diligent reader will easily verify, utilizing if need be the identities reported
in the last part of Appendix A)

θ̈n = −2θ̇2n tan θn − 4 sin θn cos θn + g2
N
∑

`=1, 6̀=n

[

cos5 θn sin3 θ`

sin3 (θn − θ`)

]

. (36a)

Remark 3. This model of course hereditates the property of isochrony of the model
(35a) it has been obtained from

θn (t± π) = θn (t) mod (π) . (36b)

The next task is to transform these equations of motion, (36a), into equations of
motion for points moving in the plane but constrained to stay on a circle of unit
radius centered at the origin. To realize this goal one may now use the change of
dependent variables from the angles θn to the vectors ~rn described in Subsection
2.1, using if need be the identities reported in the first part of Appendix A. And it
is plain that in this manner one arrives at the equations of motion (11a).
In the second example we take as point of departure the well-known solvable N -
body problem characterized by the following Newtonian equations of motion (see
equation (2.3.4.2-1) on page 188 of [2])

z̈n = −zn +
N
∑

`=1, `6=n

(

2 żn ż` + 1

zn − z`

)

. (37)

All solutions of this model are multiply periodic, being (generally nonlinear) su-
perpositions of the N functions bm (t) = cos (

√
m t+ βm) , m = 1, ..., N (with

the N phases βm depending on the initial data). For special initial data only func-
tions bm (t) with m a squared-integer contribute [2], yielding solutions completely
periodic with period 2π.
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Via the change of dependent variables (34) equations of motion (37) become (as the
diligent reader will easily verify, utilizing again, if need be, the identities reported
in the last part of Appendix A)

θ̈n = −2 θ̇2n tan θn − sin θn cos θn
(38)

+cos θn

N
∑

`=1, 6̀=n

[

2 θ̇n θ̇` + cos2 θn cos2 θ`
cos θn sin (θn − θ`)

]

.

Then we transform these equations of motion into equations of motion for points
moving in the plane but constrained to stay on a circle of unit radius centered at
the origin, by using again the change of dependent variables from the angles θn to
the vectors ~rn described in Subsection 2.1 via–if need be–the identities reported in
the first part of Appendix A. And it is plain that in this manner one arrives at the
equations of motion (12).

4. Outlook

Our original motivation to undertake this line of research was the intention to man-
ufacture N -body problems amenable to exact treatments describing motions on a
sphere, or more generally on manifolds. We consider the results reported in this
paper as a modest first step in that direction. We also believe that the actual be-
havior of the new models reported in this paper–see (7) and (8)–shall eventually
deserve a more detailed scrutiny than that provided in Subsection 3.1.

Appendix A. Identities

It is plain that the notation introduced in Subsection 2.1 entails the following addi-
tional identities

~̇rn · ~rn = 0, ~̇rn · ~̇rn = θ̇2n,
(

~rn ∧ ~̇rn

)

· ẑ = θ̇n (39a)

~̈rn · ~rn = −θ̇2n, ~̈rn · (ẑ ∧ ~rn) = θ̈n (39b)

~̇rn · ~rm = −θ̇n sin (θn − θm) (39c)

~̇rn · ~̇rm = θ̇n θ̇m cos (θn − θm) (39d)

ẑ ∧ ~̇rn = −θ̇n ~rn, ẑ ∧ ~̈rn = −θ̈n ~rn − θ̇2n ẑ ∧ ~rn (40)

(

~̇rn ∧ ~rm

)

·ẑ = −θ̇n cos (θn − θm) ,
(

~̇rn ∧ ~̇rm

)

·ẑ = −θ̇n θ̇m sin (θn − θm) .

(41)
We also display here some relations among the time-dependent “coordinates”
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zn ≡ zn (t) = tan θn (t) (42a)

and the “angles” θn ≡ θn (t)

zn − zm =
sin (θn − θm)

cos θn cos θm
,

1

zn − zm
=

cos θn cos θm
sin (θn − θm)

(42b)

żn =
θ̇n

cos2 θn
, żn zm =

θ̇n sin θm
cos2 θn cos θm

, żn żm =
θ̇n θ̇m

cos2 θn cos2 θm
(43)

żn + żm
zn − zm

=
θ̇n cos2 θm + θ̇m cos2 θn

cos θn cos θm sin (θn − θm)

żnzm + żm zn
zn − zm

=
θ̇n sin θm cos θm + θ̇m sin θn cos θn

cos θn cos θm sin (θn − θm)
(44)

żn żm
zn − zm

=
θ̇n θ̇m

cos θn cos θm sin (θn − θm)

z̈n =
θ̈n

cos2 θn
+

2 θ̇2n sin θn
cos3 θn

=
θ̈n + 2 θ̇2n tan θn

cos2 θn
· (45)

Appendix B. Solution of the System (31)

In this Appendix we indicate how the initial-value problem of the system of N
(decoupled) first-order ODEs (31) is solved.
Let us, for notational convenience, make here the following change of variables

ζn (t) = exp [i θn (t)] (46a)

entailing

ζ̇n (t) = i θ̇n (t) exp [i θn (t)] . (46b)

We then use the relation (46a) to rewrite the equations of motion (31) as follows:

µ ζN ζ̇ = i

[

−η ζN+1 +
N
∑

m=1

(

hm ζ2m
)

]

. (47)

Remark 4. Let us emphasize that, in the last formula and below (in this Appendix),
as a notational simplification, we omit to indicate explicitly the time-dependence
of the dependent variable ζn ≡ ζn (t), as well as its dependence on the index n;
and likewise the dependence on this index n of the parameters µn and ηn.
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The ODE (47) can clearly be solved by the following quadrature
ζ(t)
∫

ζ(0)

dξ ξN−2

{

−η ξN−1 +

N
∑

m=1

[

hm ξ2(m−1)
]

}−1

=
i t

µ
· (48)

To perform the integration it is convenient to introduce the 2 (N − 1) zeros ξj of
the polynomial of degree 2 (N − 1) appearing in the denominator of the integrand,

−η ξN−1 +
N
∑

m=1

[

hm ξ2(m−1)
]

= hN

2(N−1)
∏

j=1

(ξ − ξj) (49a)

and then the 2 (N − 1) “residues” φj defined by setting
{

−η ξN−1 +
N
∑

m=1

[

hm ξ2(m−1)
]

}−1

= h−1
N

2(N−1)
∑

j=1

(

φj

ξ − ξj

)

. (49b)

Note that these formulas imply that the computation of, firstly, the 2 (N − 1) zeros
ξj , and, secondly, the 2 (N − 1) residues φj , is a purely algebraic task (although
not one that can be analytically performed for N ≥ 3) and hence these quantities
can in principle be considered known functions of the parameter η (from which
they inherit a dependence on the index n, see Remark 4 and of the N constants
of motion hm. As for these N quantities hm (which are of course independent of
the index n) they are–in the context of the initial-value problem for the dynamical
system (28)–explicitly given by the formulas (25b) at t = 0 (let us reiterate that
these expressions of the N constants of motion hm are valid throughout the time
evolution, and of course, in particular, at the initial time t = 0).
The final step is to perform the integration in the left-hand side of (48). Via (49b)
the key ingredient to do so is the formula

ζ
∫

ζ0

dξ
ξN−2

ξ − ξ0
=

ζ−ξ0
∫

ζ0−ξ0

dξ
(ξ + ξ0)

N−2

ξ

=

ζ−ξ0
∫

ζ0−ξ0

dξ
N−2
∑

k=0

[(

N − 2

k

)

ξk−1 ξN−2−k
0

]

(50)

= ξN−2
0 log

(

ζ − ξ0
ζ0 − ξ0

)

+
N−2
∑

k=1

{

(

N − 2

k

)

ξN−2−k
0

k

[

(ζ − ξ0)
k − (ζ0 − ξ0)

k
]

}

.
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Abstract. Here we obtain various covariant expressions for the generalized
Euler decompositions of three-dimensional rotations and pseudo-rotations
based on the vector parameterization developed by Rodrigues, Gibbs and
Fedorov [3, 8]. When the chosen rotational axes form a (generally non-
orthogonal) basis, the solutions may be written explicitly in terms of the
coordinates of the compound vector parameter in this basis. An alternative
version of these results is based on considering the entries of the (pseudo-
)rotational matrix given by Rodrigues’ formula. Apart from pure geometry
and rigid body mechanics [1, 9, 10], they find applications in areas that vary
from robotics and image processing [7], through crystallography and diffrac-
tometry [4] to relativity, quantum mechanics and gauge field theories [2,5,6].

1. Vector Algebra in Non-Orthogonal Bases

We remind that if {ĉk} is a basis in R
n, each vector in this space can be expanded as

x = xkĉk (summation over repeated upper and lower indices is assumed through-
out the text), where the coefficients, or the parallel projections, happen to coincide
with the orthogonal projections xk = xk = ĉk(x) as long as the basis is orthonor-
mal, i.e., (ĉi, ĉj) = δij . In the generic case of non-orthogonal bases, however,
there is a crucial difference between upper and lower indices and although the
above expansion is still valid, the vector components are equal to the orthogonal
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projections in the dual basis {ĉk}

xk = (ĉk,x), ĉ
i(ĉj) = δij .

This dual basis can easily be constructed with the aid of the skew-symmetric Levi-
Civita symbol εijk, which in R

3 gives the usual cross product

εijkĉ
k =

ĉi×ĉj

(ĉ1, ĉ2, ĉ3)
, (ĉ1, ĉ2, ĉ3) = (ĉ1, ĉ2× ĉ3) = ω (1)

and one may consider the bases {ĉk} and {ĉk} as mutually dual, which generates
duality between contravariant (upper) and covariant (lower) indices. The latter can
be made even more explicit by introducing the metric tensor

g : gik = (ĉi, ĉk), g−1 : gik = (ĉi, ĉk) (2)

that allows for transforming one type of coordinates into the other

xi = gikxk, xi = gikx
k. (3)

Moreover, the volumes in the two bases are easily seen to be mutually reciprocal

(ĉ1, ĉ2, ĉ3) = (ĉ1, ĉ2, ĉ3)
−1 = ω−1

and since gik is a Gram matrix, its determinant is related to ω by

|g | = det gik = (ĉ1, ĉ2, ĉ3)
2 = ω2, |g |−1 = det gik = (ĉ1, ĉ2, ĉ3)2 = ω−2.

2. Quaternions and Vector Parameters

We may take advantage of the local isomorphism between the Lie groups SO(3)
and SU(2) to construct our main tool, the vector parameter, (also known as Ro-
drigues’ or Gibbs’ vector). Identifying SU(2) ∼= S

3 with the set of unit quater-
nions, we obtain a convenient representation for the rotation group via projection

0 → Z2 → SU(2) → SO(3) → 0.

More precisely, we may choose a basis of su(2) in the form

i =

(

i 0
0 −i

)

, j =

(

0 1
−1 0

)

, k =

(

0 i
i 0

)

(4)

and introduce the set of unit quaternions as

ζ = ζ0 + ζ1i+ ζ2j+ ζ3k, |ζ|2 = 1, ζµ ∈ R

with norm given by

| ζ |2 =
1

2
Tr(ζζ̄) = det(ζ) =

3
∑

µ=0

ζ2µ
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where ζ̄ = ζ0 − ζ1i− ζ2j− ζ3k stands for the conjugate quaternion.
Next, we associate with each vector x∈R

3 a skew-hermitian matrix given by

x → X = x1i+ x2j+ x3k

where xi are the Cartesian coordinates of x in the default basis.
Now we let SU(1, 1) act in its Lie algebra via the adjoint representation Adζ :
X → ζX ζ̄, which can be viewed as a norm-preserving automorphism of R3. It
is not difficult to see that the orthogonal matrix transforming the corresponding
Cartesian coordinates of three-dimensional vectors is given by

R(ζ) = (ζ20 − ζ2)I + 2ζ ⊗ ζT + 2ζ0ζ
× (5)

where ζ ∈ R
3 stands for the imaginary, or vector part of the quaternion ζ = (ζ0, ζ)

and we refer to ζ0 as its real, or scalar part. Then, using the substitution

ζ0 = cos
ϕ

2
, ζ = sin

ϕ

2
n

one easily recovers the famous Rodrigues’ formula

R(n, ϕ) = cosϕ I + (1− cosϕ)n⊗ n
T + sinϕn

× (6)

which shows that ζ acts as a rotation by an angle ϕ about the axis determined by the
unit vector n. In particular R(ζ) is a half-turn for a purely imaginary quaternion
(ζ0 = 0 ⇒ ζ = n) and the identity transformation in the scalar case (ζ0 = 1 ⇒

ζ = 0). The correspondence between quaternions ζ and vector parameters c is
then naturally given by the stereographic projection

S
3 −→ RP

3 : ζ −→ c =
ζ

ζ0
(7)

which can be lifted back to the two-sheeted cover as

ζ±0 = ±(1 + c
2)−

1

2 , ζ± = ζ±0 c. (8)

In that sense, vector parametrization appears to be a very natural choice for the
description of the projective group SO(3). Note that with the help of (7) and (8),
Rodrigues’ formula easily takes the simple rational form

R(c) =
(1− c

2) I + 2 c⊗ c
T + 2 c×

1 + c2
· (9)

The above correspondence (7) also allows for deriving a vector parameter compo-
sition law from quaternion multiplication

ζ = ξ η = (ξ0η0 − (ξ,η), η0ξ + ξ0η + ξ×η) .

After stereographic projection η → c1, ξ → c2 and ζ → c we easily obtain

c = 〈c2, c1〉 =
c2 + c1 + c2 × c1

1− (c2, c1)
· (10)
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It is also not hard to see that for a composition of three rotations

c = 〈c3, c2, c1〉

one has respectively

c=
c3 + c2 + c1 + c3 × c2 + c3 × c1 + c2 × c1 + (c3 × c2)× c1 − (c3, c2) c1

1− (c3, c2)− (c3, c1)− (c2, c1)− (c3, c2, c1)
·

Moreover, we note that the composition is associative but non-commutative and
can be used as a substitute of the standard matrix representation since

〈 c, 0 〉 = 〈0, c 〉 = c, 〈 c, −c 〉 = 0, R(0) = I, R(−c) = R−1(c).

Compared to the latter, it has several major advantages: first, it is much simpler
for computations, second, Rodrigues’ formula and many other useful expressions
appear as rational functions, rewritten in terms of c, and finally, as we already
have mentioned, the vector-parameter gives a topologically correct description of
SO(3) ∼= RP

3 as it is a projective quantity by construction.

3. Euler Decomposition

Our task consists of finding the angles (or scalar parameters) of rotation about
initially given oriented axes with unit vectors ĉk (possibly coplanar, but such that
ĉ2 is not parallel to any of the other two) in the decomposition

R(c) = R(c3)R(c2)R(c1) (11)

for an initially given compound rotation with vector parameter c = τn, where
n
2 = 1 and τ = tan

ϕ

2
(rotation by an angle ϕ about the oriented axis n). Instead

of the angles ϕk, we consider the scalar parameters τk determined by ck = τk ĉk.
The first step is to insert (11) in a suitably chosen scalar product

(ĉ3,R(c) ĉ1) = (ĉ3,R(c2) ĉ1) (12)

where we have made use of the fact that ĉk is an eigenvector of R(ck) with unit
eigenvalue. In combination with (9), this leads to a quadratic equation for τ2 in the
form

(r31 + g31 − 2g12g23) τ
2
2 + 2ω τ2 + r31 − g31 = 0 (13)

in which we use the notations of Section 1, as well as rij = (ĉi,R(c)ĉj), that is
given by (9). We also have

r31 = g31 + σ31, σ31 = 2
c1c3 − c

2g13 − c̃2

1 + c2
(14)

where ck = ĉk(c) and c̃j = ωcj . Note that unlike ck, the components c̃k may be
defined even if the ĉk’s are coplanar and do not constitute a basis, as the vanishing
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denominator in (1) is canceled.
Equation (13) has real solutions whenever its discriminant is non-negative

ω2 = |g | ≥ r231 − g231 − 2g12g23 (r31 − g31) = σ2
31 − 2G31σ31

where G31 = g12g23−g31. Taking into account that gik is symmetric with diagonal
elements equal to one, we may write the above inequality as

∆ =

∣

∣

∣

∣

∣

∣

1 g12 r31
g21 1 g23
r31 g32 1

∣

∣

∣

∣

∣

∣

= |g | − σ2
31 + 2G31σ31 ≥ 0 (15)

which is guaranteed only for g12=g23=0 (i.e., ĉ2⊥ ĉ1,3) and the solutions are

τ±2 =
−ω ±

√
∆

r31 + g31 − 2g12g23
=

−ω ±
√
∆

σ31 − 2G31
· (16)

For the derivation of τ1 and τ3 we can use a linear algorithm - the trick here is to
write (11) in three different ways

c1 = 〈−c2,−c3, c 〉, c2 = 〈−c3, c,−c1 〉, c3 = 〈c,−c1,−c2 〉

and then multiply the kth equation on the left with ĉ
×

k , by which we derive three
lower rank systems, each containing (in the regular case) a nontrivial relation de-
rived by considering scalar product with c. Thus we obtain

τ±1 =
(c2g23 − c2c3 − c̃1)τ±2

(c1c̃1 + c2c̃2 + g23c1 − g13c2)τ
±

2 + c1c3 − c2g13 − c̃2

τ±3 =
(c2g12 − c1c2 − c̃3)τ±2

(c2c̃2 + c3c̃3 + g12c3 − g13c2)τ
±

2 + c1c3 − c2g13 − c̃2
·

(17)

With the aid of (9), the latter may be written in a more compact form as

τ±1 =
(g32 − r32) τ

±

2

((g32 + r32)c1 − (g31 + r31)c2) τ
±

2 + r31 − g31

τ±3 =
(g21 − r21) τ

±

2

((g21 + r21)c3 − (g31 + r31)c2) τ
±

2 + r31 − g31

(18)

which allows for rapid and accurate computations, but fails in the symmetric case
R(n, π) = 2n⊗n

T −I, as we end up with an indeterminacy of the type 0×∞ in
the first term of the denominator. Thus, for a half-turn ϕ = π (i.e., when τ → ∞),
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we apply directly l’Hôpital’s rule to obtain

τ±1 =
(g23 − n2n3) τ

±

2

(n1ñ1 + n2ñ2) τ±2 + n1n3 − g13

τ±2 =
−ω ±

√

|g |+ 4(g13 − n1n3)(n1n3 − g12g23)

2(n1n3 − g12g23)

τ±3 =
(g12 − n1n2) τ

±

2

(n2ñ2 + n3ñ3) τ±2 + n1n3 − g13

(19)

where ñj = ωnj (see the above definition of c̃j).
Note that each rotation in the decomposition may happen to be a half-turn itself.
Divergencies of the scalar parameters can easily be regularized by lifting back to
the universal cover using (8), i.e., ϕ = π ⇒ ζ0 = 0, ζ = n.

We may also consider decompositions with respect to only two axes

R(c) = R(c2)R(c1). (20)

Following the same idea as before, we easily derive the equality

r21 = (ĉ2,R(c) ĉ1) = (ĉ2, ĉ1) = g21 (21)

which plays the role of necessary and sufficient condition for the existence of such
decomposition. Next, we multiply (10) on the left by c

× and consider dot products
with ĉ1 and ĉ2 respectively to obtain (assuming τ1,2 6= 0)

τ1 =
c̃3

g12c1 − c2
, τ2 =

c̃3

g12c2 − c1
· (22)

When the vectors ĉk constitute a basis, we can express directly the scalar param-
eters τk as functions of the contravariant components ck of the compound vector
parameter c - for that we first need to substitute

σ31 = 2
g1ig3kc

ick − gikc
ickg13 − ωc2

1 + gikcick
(23)

in (15) and (16), while the other two scalar parameters are given by

τ±1 =
(gikc

ickg23 − g2ig3kc
ick − ωc1)τ±2

(ω(g1ic1ci+g2ic2ci)+g23g1ici−g13g2ici)τ
±

2 +g1ig3kcick−gikcickg13−ωc2

τ±3 =
(gikc

ickg12 − g1ig2kc
ick − ωc3)τ±2

(ω(g2ic2ci+g3ic3ci)+g12g3ici−g13g2ici)τ
±

2 +g1ig3kcick−gikcickg13−ωc2
·

Similarly, we may express τk as explicit functions of the covariant components,
i.e., the orthogonal projections ck, which is straightforward.
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4. Degenerate Solutions

There is a situation in which one cannot determine τ1 and τ3 independently from
(17) due to lack of sufficient information. Topologically this phenomenon is ex-
plained by a singularity of the parametrization π : RP2 → T

3 resulting in the loss
of a degree of freedom, while in the applications it is known as a gimbal lock. The
condition for such degenerate type of solution is

ĉ3 = ±R(c) ĉ1 (24)

and in that case (11) takes the form

R(c) = R(±τ3R(c) ĉ1)R(τ2ĉ2)R(τ1ĉ1)

which can also be written as

R(τ2ĉ2)R(τ1ĉ1) = R(∓τ3R(c) ĉ1)R(c) = R(c)R(∓τ3ĉ1) (25)

where for the last equality we use the well-known relation

R(c)R(a)R(c)−1 = R(R(c)a). (26)

Multiplying both sides of (25) on the right with R(±τ3ĉ1), we end up with

R(c) = R(τ2ĉ2)R(〈τ1ĉ1,±τ3ĉ1〉) = R(τ2ĉ2)R(τ ′1ĉ1) (27)

where, if ϕk stands for the Euler angle about ĉk, according to (10) we have

τ ′1 =
τ1 ± τ3
1∓ τ1τ3

= tan

(

ϕ1 ± ϕ3

2

)

· (28)

We see that the problem is reduced to decomposition into a pair of rotations and
since (27) guarantees that (21) is fulfilled1, we may use (22) to obtain

τ2 =
c̃3

g12c2 − c1
, τ ′1 =

τ1 ± τ3
1∓ τ1τ3

=
c̃3

g12c1 − c2
· (29)

The first equation above determines τ2 uniquely, but for τ1 and τ3 we end up with
a one-parameter solution written in terms of the Euler angles ϕk as

ϕ1 ± ϕ2 = 2arctan

(

c̃3

g12c1 − c2

)

· (30)

1Otherwise the decomposition is impossible, as in this case we have ∆ = −(r21 − g21)
2
≤ 0.
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5. The Hyperbolic Case

In this section we obtain the corresponding results in the hyperbolic case, i.e., for
the three-dimensional restricted Lorentz group SO

+(2, 1)∼= SU(1, 1)/Z2. Choos-
ing a basis of su(1, 1) in the form

e
1 =

(

0 1
1 0

)

, e
2 =

(

0 i
−i 0

)

, e
3 =

(

i 0
0 −i

)

(31)

we easily identify the group SU(1, 1) with the set of unit split quaternions

ζ = ζ0 + ζk e
k, |ζ| = det ζ = ζ20 − ζ21 − ζ22 + ζ23 = 1.

Expansion in the above basis allows for an explicit isometry R
2,1 → su(1, 1)

x → X =

(

ix3 x1 + ix2
x1 − ix2 −ix3

)

, x · x = − detX = x21 + x22 − x23.

The projection on SO
+(2, 1) is given by the adjoint action Ad ζ : X → ζ X ζ−1,

which constitutes a norm-preserving automorphism. With the notation ζ = (ζ0, ζ),
ζ ∈ R

2,1, the Cartesian coordinates of x are easily seen to be transformed by the
pseudo-orthogonal matrix

Rh(ζ) = (ζ20 + ζ2)I − 2 ζ ⊗ η ζ + 2ζ0 ζ
f (32)

where η = diag(1, 1,−1) is the flat metric in R
2,1, Pζ = ζ⊗η ζ is explicitly writ-

ten as Pζ
i
j
= ηjkζ

iζk and ζf = η ζ×, that will be denoted also as ζf ξ = ζf ξ.
A covariant definition of the tensor objects we work with allows for using × in-
stead of f and ζ ⊗ ζT for ζ ⊗ η ζ - switching from upper to lower indices and
vice versa then naturally involves the metric η. However, we chose to make our
notations as explicit as we can in order to avoid possible confusion.
Furthermore, we may introduce the hyperbolic vector parameter in the usual pro-

jective manner c =
ζ

ζ0
and write Rh with its help as

Rh(c) =
(1 + c

2)I − 2 c⊗ η c+ 2 cf

1− c2
· (33)

The inverse transformation yields

ζ±0 = ±(1− c
2)−

1

2 , ζ± = ζ±0 c (34)

where the two signs correspond to different sheets of the cover.
From the multiplication rule for split quaternions we easily derive the composition
law of hyperbolic vector parameters

〈c2, c1〉 =
c2 + c1 + c2 f c1

1 + c2 · c1
(35)
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and for a composition of three transformations c = 〈c3, c2, c1〉 we have

c=
c3 + c2 + c1 + (c3 · c2) c1 + c3 f c2 + c3 f c1 + c2 f c1 + (c3 f c2)f c1

1 + c3 · c2 + c3 · c1 + c2 · c1 + (c3, c2, c1)
·

It is easy to see that this construction constitutes a representation of SO+(2, 1).

One straightforward application is obtaining the Euler decomposition

Rh(c) = Rh(c3)Rh(c2)Rh(c1) (36)

where c = τ n and ck = τk ĉk are the vector parameters of the pseudo-rotations
in the decomposition, n and ĉk - the corresponding quasi-unit vectors along the
oriented axes and τ, τk - the scalar parameters. What we mean here by quasi-unit
is the following: since the hyperbolic flat metric in Minkowski space allows non-
zero vectors to have positive, negative and vanishing scalar square, it is not always
possible to normalize with unit length. Instead, we have ε = n · n = ±1 in the
space-like, respectively time-like case and ε = 0 in the isotropic one. In order to
normalize an isotropic vector, we resort to Wick rotation, taking Euclidean rather
than hyperbolic scalar product, so if ε = 0, we write c = τn, (n,n) = 1. Similar
arguments hold for ck and εk = ĉk · ĉk. Despite the evident analogy, a crucial
difference from the Euclidean case is the explicit dependance on the geometric
type of the invariant axis of the pseudo-rotation - that is why we have three versions
of Rodrigues’ formula

1. Hyperbolic: TrRh(ζ) > 3 ⇔ ζ2 > 0 (space-like) ⇒ c = tanh
ϕ

2
n

Rh(n, ϕ) = coshϕ I + (1− coshϕ)n⊗ η n+ sinhϕn
f

2. Elliptic: TrRh(ζ) < 3 ⇔ ζ2 < 0 (time-like) ⇒ c = tan
ϕ

2
n

Rh(n, ϕ) = cosϕ I + (cosϕ− 1)n⊗ η n+ sinϕn
f

3. Parabolic: TrRh(ζ) = 3 ⇔ ζ2 = 0 (isotropic) ⇒ c =
ϕ

2
n

Rh(n, ϕ) = I + ϕn
f −

ϕ2

2
n⊗ η n, (n,n) = 1

which cover all transformations in the restricted group SO
+(2, 1). One may, how-

ever, generalize to the whole Lorentz group SO(2, 1), using a simple trick. The
corresponding extension consists in allowing c

2 > 1 for the hyperbolic case. Since
this is not covered by the standard projection we use here, the above parametriza-
tion makes no sense, but (33) still does and we may denote

ζ0 = i sinh
ϕ

2
, ζ = i cosh

ϕ

2
n =⇒ c =

ζ

ζ0
= coth

ϕ

2
n
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thus obtaining

Rh(n, ϕ) = − coshϕ I + (1 + coshϕ)n⊗ η n− sinhϕn
f (37)

that is valid for pseudo-rotations that do not preserve the orientation of time.
Furthermore, we may introduce the notations

rij = ĉi · Rh(c) ĉj , gik = ĉi · ĉk, ω = ĉ1 · ĉ2 f ĉ3

and point that (36) leads to r31 = ĉ3 · Rh(τ2ĉ2) ĉ1, from which we derive, accord-
ing to (33), a quadratic equation for the middle scalar parameter τ2

[ε2(r31 + g31)− 2g12g23] τ
2
2 − 2ωτ2 + g31 − r31 = 0.

The latter has real roots whenever2

∆ = ω2+[ ε2(r31+g31)−2g12g23](r31−g31) = −

∣

∣

∣

∣

∣

∣

ε1 g12 r31
g21 ε2 g23
r31 g32 ε3

∣

∣

∣

∣

∣

∣

≥ 0 (38)

and they are explicitly given by

τ±2 =
ω ±

√
∆

ε2(r31 + g31)− 2g12g23
· (39)

Now we use the familiar from the Euclidean case technique to obtain

τ±1 =
(c2g23 − c2c3 + c̃1)τ±2

(c1c̃1 + c2c̃2 + g23c1 − g13c2)τ
±

2 + c1c3 − c2g13 + c̃2

τ±3 =
(c2g12 − c1c2 + c̃3)τ±2

(c2c̃2 + c3c̃3 + g12c3 − g13c2)τ
±

2 + c1c3 − c2g13 + c̃2

(40)

where ck = ĉk(c) and c̃k = ωck just as in Section 3.
Note that the above solutions may not be restricted to SO

+(2, 1), as can be seen
in many examples. On the other hand, it is not possible to have a pure SO

+(2, 1)
decomposition for a transformation of the type (37). As for the case of decompo-
sitions with respect to two axes, the condition r21 = g21 is still relevant and the
solutions are easily shown to be

τ1 =
c̃3

ε1c2 − g12c1
, τ2 =

c̃3

ε2c1 − g12c2
· (41)

We also have the gimbal lock condition ĉ3 = ±Rh(c) ĉ1, which, if satisfied to-
gether with r21 = g21, gives a one-parameter set of degenerate solutions

τ2 =
ρ̃3

ε2ρ1 − κ12ρ2
,

τ1 ± τ3
1± ε1τ1τ3

=
ρ̃3

ε1ρ2 − κ12ρ1
· (42)

2Instead of the Euclidean ĉ2⊥ ĉ1,3, we found 21 configurations of axes that guarantee it.
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Note that (40) is valid even if the vectors ĉk do not constitute a basis. If they do,
however, it is possible to express τk explicitly from the components of c, just as in
Section 3, once we substitute in (38) and (39) the expressions

r31 + g31 = 2
g13 − c1c3 − ωc1

1− c2
, r31 − g31 = 2

c
2g13 − c1c3 − ωc1

1− c2

and take into account that ci=gikc
k, ci=gikck, c

2=cici=gikc
ick=gikcick.

On the other hand, one may easily write (40) in the more compact form

τ±1 =
(r32 − g32) τ

±

2

((g32 + r32)c1 − (g31 + r31)c2) τ
±

2 + g31 − r31

τ±3 =
(r21 − g21) τ

±

2

((g21 + r21)c3 − (g31 + r31)c2) τ
±

2 + g31 − r31
·

(43)

These expressions fail in the limit τ → ∞, bit in this case we use l’Hôpital’s rule
to obtain

τ±1 =
(εg23 − n2n3)τ

±

2

(n1ñ1 + n2ñ2)τ±2 + n1n3 − εg13
, τ±3 =

(εg12 − n1n2)τ
±

2

(n2ñ2 + n3ñ3)τ±2 + n1n3 − εg13
·

For details on the derivation of most of the results in this section, as well for the
applications in special relativity and scattering theory, we refer to [2].

References

[1] Bauchau O., Trainelli L. and Bottaso C., The Vectorial Parameterization of Rotation,
Nonlinear Dynamics 32 (2003) 71-92.

[2] Brezov D., Mladenova C. and Mladenov I., Vector Parameters in Classical Hyper-
bolic Geometry, J. Geom. Symmetry Phys. 30 (2013) 19-48.

[3] Brezov D., Mladenova C. and Mladenov I., Vector Decompositions of Rotations, J.
Geom. Symmetry Phys. 28 (2012) 67-103.

[4] Diamond R., On the Factorization of Rotations with Examples in Diffractometry,
Proc. R. Soc. Lond. A 428 (1990) 451-472.

[5] Fedorov F., The Lorentz Group (in Russian), Science, Moscow 1979.
[6] Kuvshinov V. and Tho N., Local Vector Parameters of Groups, The Cartan Form and

Applications to Gauge and Chiral Field Theory (in Russian), Physics of Elementary
Particles and the Nucleus 25 (1994) 603-648.

[7] Mladenova C., Group Theory in the Problems of Modeling and Control of Multi-Body
Systems, J. Geom. Symmetry Phys. 8 (2006) 17-121.

[8] Mladenova C. and Mladenov I., Vector Decomposition of Finite Rotations, Rep.
Math. Phys. 68 (2011) 107-117.

[9] Müller A., Group Theoretical Approaches to Vector Parameterization of Rotations,
J. Geom. Symmetry Phys. 19 (2010) 43-72.

[10] Pina E., Rotations with Rodrigues’ Vector, Eur. J. Phys. 32 (2011) 1171-1178.



International Conference on Integrability
Recursion Operators and Soliton Interactions
29-31 August 2012, Sofia, Bulgaria
B. Aneva, G. Grahovski
R. Ivanov and D. Mladenov, Eds
Avangard Prima, Sofia 2014, pp 74–85
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Abstract. We derive a model suitable for computer simulations of a weak
ion beam with solitons of the Korteweg-de Vries (KdV) equation. This type
of interactions arise in experiments on soliton generation in double plasma
devices and include soliton growth, damping, or decay. Our simplified model
aims at capturing only the essential physics of these interactions. The model
is formulated in the context of plasma physics in the electrostatic approxi-
mation. The bulk plasma is described by cold fluid ions and warm, massless
electrons. The ion beam is included as a separate plasma species and is cou-
pled to the bulk plasma through Poisson’s equation. The derivation uses the
Lagrangian of the system of plasma and beam and an expansion in small am-
plitude perturbations around an equilibrium. The Korteweg-de Vries equa-
tion arises from this expansion naturally. The model is thus applicable to
general weakly non-linear ion-acoustic plasma waves, of which solitons are
a particular case. A novel feature of our method is that it includes both the
evolution of the wave and the perturbation while in previous analyses the
perturbation is kept fixed. The computational advantages of such description
other approaches, such as fluid description of both plasma and beam or all ki-
netic description, are that in the former case particle trapping cannot be fully
simulated while in the latter case the computational time is much longer and
the numerical noise is higher than in our hybrid approach.

∗Reprinted from J. Geom. Symmetry Phys. 30 (2013) 49–61.
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1. Introduction

The Korteweg-de Vries (KdV) equation has been derived in multiple areas of
physics [19], including plasma physics [4, 9, 23] (see also the review article [20],
and references therein). Ion-acoustic solitons were first observed by Ikezi et al.
[13] and subsequently confirmed by other experimental groups [2, 18]. In plasma
physics experiments it is rare that when plasmas are excited only the phenomenon
under investigation develops. As a rule, a variety of phenomena occur simulta-
neously and often their interaction affects, or even obscures, the targeted physics.
For example, in double plasma experiment machines [2, 13, 18], the excitation of
a soliton is accompanied by a burst of ions [1] and the two co-propagate and in-
teract with each other [2, 18]. This interaction may lead to modifications of the
soliton such as growth, damping, or decay. It is, therefore, of interest to investigate
the more complex, simultaneous development of interacting waves (solitons) and
beam particles.
The study of solitons and co-propagating (resonant) particles has been done the-
oretically [14, 16, 22] as well as numerically [2, 16, 17]. Theoretical studies are
useful since explicit expressions for the damping rates may be obtained. However,
a drawback is their restriction to either the linear stage or only the initial stages of
the non-linear regime of interaction. Only exceptional cases of perturbative anal-
ysis of solitons yield themselves to non-linear treatment, one example being given
by the case of soliton-soliton interactions [10, 11, 15]. A further drawback is that
the time evolution of the perturbation itself is not taken into account. In contrast,
numerical studies permit a more general investigation. One of the most prevalent
and important non-linear kinetic effects is wave particle trapping, which necessar-
ily includes the time evolution of the perturbation beam particles. While this effect
is particularly difficult to tackle analytically, it is readily accessible from a numeri-
cal viewpoint. Yet, it is our opinion that this phenomenon has not been the subject
of a comprehensive and systematical numerical study. It is the purpose of this pa-
per to derive a model suitable for the numerical investigation of weakly non-linear
ion-acoustic waves (e.g., solitons) and particle interaction in electrostatic plasmas.
A novel and necessary feature in this model is the inclusion of the time evolution
of both the wave and the perturbation (beam particles).
The two most common techniques of plasma simulations are fluid and kinetic
[5, 12, 21]. Kinetic methods have the most general validity, i.e., comprehensive
physics, but also the disadvantages of long computational times and high numerical
noise; the latter may sometimes obscure importantly physics. In comparison, fluid
simulations have fast computational times and very low numerical noise but have a
limited validity, i.e., miss some relevant physics. For example, in the fluid picture
the plasma is assumed to be in a local thermal equilibrium while this may be a good
approximation for the bulk plasma, it is not necessarily true for the beam particles
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of interest here. Therefore, the most advantageous approach to the simulation of
a beam-soliton system is the hybrid fluid-kinetic, where the soliton is described
by a fluid while the ion beam is described by a collection of particles. Such ap-
proach combines the advantages of fluid simulations–fast computational time and
low noise–and those of kinetic models with the more comprehensive modeling of
kinetic effects.

2. Background

Taniuti and Washimi [23] looked for weakly non-linear solutions of the following
system of equations

∂tn+ ∂x(nu) = 0, ∂tu+ u∂xu = E, ∂xne = −neE, ∂xE = n−ne. (1)

In (1), n denotes the ion fluid density, u is the ion fluid velocity, ne is the electron
density, and E is the electric field. The system of equations (1) describes plasma
in the electrostatic approximation. The first equation is the continuity equation for
ions in the cold fluid approximation, the second is the momentum equation for the
ions, the third equation is the momentum equation for the electron species of the
plasma, assumed massless and in local thermal equilibrium (reduced to just the
force balance condition), and the fourth equation in (1) is Poisson’s equation. All
variables are dimensionless, where the density is given in units of some character-
istic density n0, velocity is in units of

√

κTe/M (ion-acoustic sound speed), with
Boltzmann constant κ and constant electron temperature Te, dimensions of length
are in units of Debye length,

√

κTe/4πe2n0, and electric potential is measured in
units of κTe/e. Here M and e denote the ion mass and ion charge. The boundary
condition is taken at x → ∞

n = ne = 1, u = 0. (2)

The dispersion relation following from the linearized system (1) is k2 = ω2/(1 −
ω2), where k is the wave number and ω is the wave frequency. This dispersion
relation may be expanded for small ω as k ≈ ω

(

1 + 1
2ω

2
)

. The wave phase may
be written as

kx− ωt = (x− t)ω +
1

2
ω3.

Defining µ as ω2 = εµ2, with a small parameter ε, we can write

kx− ωt = µ

[

ε1/2(x− t) +
1

2
µ2ε3/2x

]

(3)

which suggests the coordinate transformation

ξ = ε1/2(x− t), η = ε3/2x. (4)
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After making this coordinate change in equations (1) and considering the first two
orders in the expansion in ε, the KdV equation results [23].

3. Coupled System of Ion Beam and Plasma in the Weakly Non-linear
Approximation

We now derive the main result of this paper, a model for a small ion beam in-
teracting with weakly non-linear plasma waves. Our derivation proceeds from a
variational principle. (A Hamiltonian perturbative derivation of KdV was given in
[6]. We consider our method more general and more suitable as a computational
starting point.) First, we note that the boundary condition (2) must be modified to
include the ion beam; at x → ±∞ we have

n = 1 (5)

ne = 1 + nb (6)

u = 0 (7)

where nb is a specified, constant equilibrium ion beam density. Next we note
that in the electrostatic approximation the electric field E may be derived from an
electric potential, E = −∂xφ. Then the third equation in (1) may be solved and
the boundary condition (6) used to yield the electron density

ne(x) = (1 + nb) e
φ(x). (8)

Define a velocity potential Υ as

u = ∂xΥ. (9)

We may write the following Lagrangian for the cold ion fluid, ion beam, and warm
electrons

L = −

∫

dx n(x)

[

1

2
(∂xΥ)2 + ∂tΥ

]

+
1

2

∫

dx (∂xφ)
2

(10)

−

∫

dxnφ+

∫

dx (1 + nb)e
φ(x) +

Np
∑

j=1

wj

Ẋ2
j

2
−

Np
∑

j=1

wjφ(Xj)

with particle coordinates and velocities given by Xj and Ẋj , respectively. The
particle weight is defined as wj = nb/Np. In fact, these computational particles
may represent thousands of physical ions.
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We write out the full set of equations following from the Lagrangian (10)

δL

δΥ
−→ ∂x (n∂xΥ) + ∂tn = 0 (continuity fluid equation) (11)

δL

δn
−→ −

1

2
(∂xΥ)2 − Υ̇− φ(x) = 0 (momentum fluid equation) (12)

δL

δφ
−→ −∂xxφ− n(x)−

Np
∑

j=1

wjδ(x−Xj) + (1 + nb)e
φ = 0

(Poisson’s equation) (13)
δL

δXj

−→ −Ẍj − ∂Xj
φ(Xj) = 0. (Newton’s second law). (14)

The system (11)–(14) is a coupled system of a fluid and kinetic plasma disturbances
represented by the fluid quantities n and Υ, and Np the number of particles at lo-
cations Xj . The fluid and particles interact with each other through electric field,
which is found self-consistently (i.e., electric field time evolution is determined
by all charges in the system, whose time evolution, in turn, is determined by the
electric field) from equation (13). (Strictly speaking, the charge neutrality condi-
tion for the ion beam in equilibrium is not satisfied by a finite number of particles,
Np. This deficiency is removed when a computational grid is introduced; then,
the computational particles are endowed with spatial extent and the charge neutral-
ity condition may be satisfied exactly by a finite number of particles. For further
details, please refer to [5, 8, 12] and the discussion in Section 4.) Such system is
still very general in that the fluid and particle disturbances may be of very general
form. We are interested only in small amplitude fluid perturbations and weak ion
beams. Therefore, we will derive a system that captures these features explicitly.
For this purpose, we first perform the change of variables (4) (which defines scaled
time and space variables and a change to a moving reference frame, see equation
(3)) and then expand the Lagrangian (10) around the equilibrium (uniform plasma
density, zero fluid ion velocity, constant beam velocity, and zero electric potential)
in the small parameter ε. Using the following relations

∂

∂x
−→ ε3/2

∂

∂η
+ ε1/2

∂

∂ξ

∂

∂t
−→ −ε1/2

∂

∂t
(15)

dx −→ ε−3/2dη
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the Lagrangian, after the change of variables and factoring out ε−3/2, takes the
form

L = −

∫

dη n





1

2
ε2

(

∂Υ̃

∂η

)2

+ ε
∂Υ̃

∂η

∂Υ̃

∂ξ
+

(

∂Υ̃

∂ξ

)2

−
∂Υ̃

∂ξ





+
1

2

∫

dη

(

ε3
(

∂φ

∂η

)2

+ ε2
∂φ

∂η

∂φ

∂ξ
+ ε

(

∂φ

∂ξ

)2
)

(16)

−

∫

dη nφ+

∫

dη (1 + ε2ñb)e
φ +

Np
∑

j=1

w̃j

(

1

2

(

dΞj

dξ

)2

− ε2φ(Ξj)

)

.

In deriving (16) we have assumed that the ion beam density is of order nb = ε2ñb

and we have used the scaled velocity potential Υ̃ = ε1/2Υ. In addition, because
of the stretching coordinate transformation, the particle weight scales as ε−3/2,
which has been factored out from the full Lagrangian and the new particle weights
become w̃j = ñb/Np.

We expand all variables as

n ≈ 1 + ε n(1) + ε2n(2) (17)

Υ̃ ≈ ≈ εΥ(1) + ε2Υ(2) (18)

φ ≈ ε φ(1) + ε2φ(2) (19)

Ξ̇j ≈ 1 + ε3/2Ξ̇
(1)
j . (20)

The dot in equation (20) is a differentiation with respect to the scaled time ξ. Note
that the ordering of the velocity in equation (20) matches the order of the scaled
velocity potential, Υ̃. After substitution of (17)–(20) into (16), we collect the terms
of order ε2 and ε3. The result is

L(2) = −

∫

dη





1

2

(

∂Υ(1)

∂ξ

)2

− n(1)∂Υ
(1)

∂ξ



−

∫

dη n(1)φ(1)+
1

2

∫

dη
(

φ(1)
)2

(21)
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and

L(3) = −

∫

dη







∂Υ(1)

∂η

∂Υ(1)

∂ξ
+

∂Υ(1)

∂ξ

∂Υ(2)

∂ξ
+ n(1)





1

2

(

∂Υ(1)

∂ξ

)2

−
∂Υ(2)

∂ξ





−n(2)∂Υ
(1)

∂ξ
+

1

2

(

∂φ(1)

∂ξ

)2

−
(

n(1)φ(2) + n(2)φ(1)
)

+ φ(1)φ(2) (22)

+
1

6

(

φ(1)
)3
}

+

Np
∑

j=1

w̃j

(

1

2

(

Ξ̇
(1)
j

)2
−

∫

dη φ(1)(η)δ(η − Ξj)

)

.

The beam of ions only contributes to L(3), as desired by the assumed ordering. The
last term in (22) was written explicitly identifying the particle as a delta function
with support at Ξj and in Section 4 we indicate how to relax this assumption.
Next we derive the equations of motion. First, variation of L(2) gives

δL(2)

δΥ(1)
−→

∂2Υ(1)

∂ξ2
−

∂n(1)

∂ξ
= 0 (23)

δL(2)

δn(1)
−→

∂Υ(1)

∂ξ
− φ(1) = 0 (24)

δL(2)

δφ(1)
−→ −n(1) + φ(1) = 0. (25)

From the three equations (23)–(25) we deduce

n(1) = φ(1),
∂Υ(1)

∂ξ
= n(1). (26)

The second of the relations (26) was obtained by integrating (23) once in ξ and
using the boundary conditions for the fluid velocity and density of the bulk plasma
ions. Next, we vary the Lagrangian L(3). Variation with respect to Υ(1) gives

δL(3)

δΥ(1)
−→ 2

∂2Υ(1)

∂ξ∂η
+

∂2Υ(2)

∂ξ2
+

∂

∂ξ

(

n(1)∂Υ
(1)

∂ξ

)

−
∂n(2)

∂ξ
= 0

from which by an additional integration in ξ and using the boundary conditions we
obtain

2
∂Υ(1)

∂η
+

∂Υ(2)

∂ξ
+ n(1)∂Υ

(1)

∂ξ
− n(2) = 0. (27)

Variation with respect to n(1) gives

δL(3)

δn(1)
−→

∂Υ(2)

∂ξ
−

1

2

(

∂Υ(1)

∂ξ

)2

− φ(2) = 0. (28)
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Variation with respect to φ(1) yields

δL(3)

δφ(1)
−→ −

∂2φ(1)

∂ξ2
− n(2) + φ(2) +

1

2

(

φ(1)
)2

−

Np
∑

j=1

w̃j δ(η − Ξj) = 0. (29)

Finally, after a variation with respect to the particle coordinate Ξj , we have

Ξ̈j +
∂φ(1)

∂η
(Ξj) = 0. (30)

From equations (27)–(29) we can exclude all second order quantities. Adding
equations (28) and (29) yields

∂Υ(2)

∂ξ
−n(2)−

1

2

(

∂Υ(1)

∂ξ

)2

−
∂2φ(1)

∂ξ2
+
1

2

(

φ(1)
)2

−

Np
∑

j=1

w̃j δ(η−Ξj) = 0. (31)

We see that from equations (27) and (31) we can solve for the second order quantity
∂Υ(2)

∂ξ
−n(2) while the two right-hand sides must be equal (compatibility condition)

1

2

(

∂Υ(1)

∂ξ

)2

+
∂2φ(1)

∂ξ2
−
1

2

(

φ(1)
)2

+

Np
∑

j=1

w̃j δ(η−Ξj) = −2
∂Υ(1)

∂η
−n(1)∂Υ

(1)

∂ξ
·

(32)
Using relations (26), we can express all fluid quantities in equation (32) in terms
of velocity potential

∂Υ(1)

∂η
+

1

2

(

∂Υ(1)

∂ξ

)2

+
1

2

∂3Υ(1)

∂ξ3
= −

Np
∑

j=1

w̃j

2
δ(η − Ξj) (33)

which is the KdV equation with a perturbation of a beam of ions (given by the
right-hand side). The beam particles evolve according to

Ξ̈j = −
∂2Υ(1)

∂ξ∂η
(Ξj) (34)

where relations (26) were used again. The coupled equations (33) and (34) repre-
sent the desired beam-plasma model. By using relations (26) we can rewrite the
Lagrangian (22) to eliminate all but the velocity potential Υ(1) and the particle
coordinates Ξj

L(3) = −

∫

dη





∂Υ(1)

∂ξ

∂Υ(1)

∂η
+

1

3

(

∂Υ(1)

∂ξ

)3

−
1

2

(

∂2Υ(1)

∂ξ2

)2




(35)

+

Np
∑

j=1

w̃j

[

1

2

(

Ξ̇
(1)
j

)2
−

∫

dη
∂Υ(1)

∂ξ
δ(η − Ξj)

]

.
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Variation of (35) yields KdV equation for the velocity [with u(1) = ∂ξΥ
(1)]

∂u(1)

∂η
+ u(1)

∂u(1)

∂ξ
+

1

2

∂3u(1)

∂ξ3
= −

Np
∑

j=1

w̃j

2

∂ δ(η − Ξj)

∂ξ
(36)

which is just the ∂ξ derivative of (33). The ξ dependence on the right-hand side
of equation (36) is through Ξj . The other two fluid quantities, density and electric
potential, satisfy the same equation (36).
We would like to stress the generality of the coupled equations (33) and (34). Pre-
vious authors have derived equations similar to (36) [16, 17] but their further an-
alytical development required particular choices for the distribution function of
the beam particles, which is a limitation of their approach. In addition, a fixed
choice of the ion beam distribution function does not take into account its temporal
modification due to the beam-wave interaction, which is a further limitation. In
comparison, our model evolves the non-linear (soliton) as well as the beam par-
ticles. Since the ion beam distribution is simulated kinetically (with particles), it
captures the correct evolution of the beam distribution function too.

4. Discussion and Conclusions

The model presented by Lagrangian (35) is the most convenient form for further
reduction and computer simulations. We briefly outline the steps necessary to pro-
ceed, referencing the reader to the more detailed discussions in [5, 8, 12]. As it
stands, the model is still an infinite degree-of-freedom (DOF) system and thus
unsuitable yet for computer simulations. Two steps are necessary to reduce (35)
to a finite DOF system: spatial discretization and time discretization. The two
steps may either be performed simultaneously (however, the action then need be
considered) or separately. The simpler approach is to consider the two steps sepa-
rately. The variational principle allows for two general numerical approaches: use
of finite differences to approximate the spatial derivatives of Υ(1) in conjunction
with an integration rule or the use of a truncated basis expansion. Either of these
approaches reduces integrals of field quantities in (35) to finite sums. After the
spatial discretization is performed, one varies the Lagrangian with respect to the
field coefficients and particle positions to derive the equations of motion. Then
time discretization must be done. The only restriction on a choice of a time in-
tegrating method is the possibility of encountering a numerical instability or high
numerical dissipation. In our experience, second or fourth order accurate explicit
Runge-Kutta methods perform satisfactory in wave-particle interaction simulations
[7].
We note that as an alternative way to the spatial discretization of the Lagrangian
described above, one could first obtain the continuous Euler-Lagrange equations
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and then perform the spatial discretization. However, such procedure may intro-
duce undesirable numerical errors (of the order of the accuracy of discretization);
it is known that such errors may lead to loss of conservation properties of the
original (continuous) system. In comparison, the approach described above al-
lows to more fully utilize the relation between symmetries of the Lagrangian and
conserved quantities in the discretized system. An illustration is provided by our
continuous field Lagrangian (35): it does not contain explicit time dependence,
hence, this system conserves total energy. Explicit time dependence is not intro-
duced by the spatial discretization and therefore the resulting discrete system (time
kept continuous) is guaranteed to also conserve energy.
A more subtle question we alluded to previously is our choice of a delta-function
particle shape, which helped simplify the presentation. In kinetic simulations of
plasmas via the so-called Particle-In-Cell (PIC) method [5, 12], particles are en-
dowed with a spatial extent. Important advantages of using finite-size particles
are the much lower numerical noise and the lack of certain numerical instabilities
present in simulations with delta-function particles. In a recent publication [8], the
author has revisited the concept of particle shapes. In particular, the connection of
the particle shape and the numerical accuracy of the force on a particle is exhibited.
The essence of the relevant results is the following. Take the case of a reduction of
the continuous fields by a finite element basis. Finite elements [3] offer a consis-
tent way of spatial discretization with increasing accuracy. Continuous quantities
are solved for (and known) on a computational grid and a rule (e.g., polynomials)
is given for finding the values of the solution between grid points. Therefore, if
one represents the solution as sum over finite elements Ψk(η)

Υ(1)(ξ, η) =

Ng
∑

k=1

Uk(ξ)Ψk(η) (37)

the last term in equation (35) reduces to

Np
∑

j=1

Ng
∑

k=1

U̇k

∫

dη Ψk(η)S(η − Ξj) (38)

where we have replaced the delta function with a more general (shape) function S.
One can verify that for the simple choices of a top-hat function for S and linear
finite elements, each particle contributes a certain amount of charge (in the PIC ter-
minology, this is called the charge deposition rule) to not one but three grid points.
Therefore, a particle is not a point in space but a “blob” of charge described by its
centroid and velocity Ξj and Ξ̇j , respectively. By the use of such extended par-
ticles the quasi-neutrality condition of the plasma in equilibrium may be satisfied
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exactly. We conclude this discussion by noting that Lagrangian finite elements of-
fer a consistent way of interpolating the force (with a desired accuracy) from the
grid to the particle location and for constructing charge deposition rules [8].

A natural further simplification of our model would be the special case of an ion
beam interacting with a weakly coupled train of solitons, in a manner similar to that
in [10, 11]. Of course, we no longer expect a nice reduction to another integrable
system since the original system of beam and solitons is not integrable. However,
such reduction should provide a much faster numerical solution since each soliton
would now be described by only two parameters, a position and an amplitude. In
addition, the numerical noise in such reduced system will be even lower than that
of our hybrid model.

In conclusion, we have derived a model of a weak ion beam interacting with weakly
non-linear solutions of the Korteweg-de Vries equation in the context of plasma
physics in the electrostatic approximation. Particular advantages are the generality
of our derivation from a Lagrangian starting point, the lower expected numeri-
cal noise in the hybrid fluid–particle approach, and the inclusion of kinetic effects
of wave-particle interactions, including their non-linear stage. Further simplifica-
tion of the model is suggested, which would apply to the interaction of a weakly
coupled soliton train with a small ion beam. Interesting questions in these nu-
merical investigations would be soliton growth and damping rates, soliton decay
conditions, beam particles wave trapping, and the possibility of formation of new,
quasi-stable structures of solitons and beam particles.
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Abstract. We consider an integrable hierarchy of nonlinear evolution equa-
tions (NLEE) related to linear bundle Lax operator L. The Lax representa-
tion is Z2 × Z2 reduced and can be naturally associated with the symmetric
space SU(3)/S(U(1)×U(2)). The simplest nontrivial equation in the hier-
archy is a generalization of Heisenberg ferromagnetic model. We construct
the N -soliton solutions for an arbitrary member of the hierarchy by using
the Zakharov-Shabat dressing method with an appropriately chosen dressing
factor. Two types of soliton solutions: quadruplet and doublet solitons are
found. The one-soliton solutions of NLEEs with even and odd dispersion
laws have different properties. In particular, the one-soliton solutions for
NLEEs with even dispersion laws are not traveling waves while their veloc-
ities and amplitudes are time dependent. Calculating the asymptotics of the
N -soliton solutions for t → ±∞ we analyze the interactions of quadruplet
solitons.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.1. Polynomial Lax Pair Related to SU(3)/S(U(1)×U(2)) . . . . . . . . . . . . . . . . . . 89
2.2. Direct Scattering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3. Dressing Method and Soliton Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

∗Reprinted from J. Geom. Symmetry Phys. 25 (2012) 23–55.

86



On Soliton Interactions for the Hierarchy of a Generalised Heisenberg . . . 87

3.1. Rational Dressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2. Soliton Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Case ii) Generic Doublet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3. Multisoliton Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4. Interactions of Quadruplet Solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5. Integrals of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

1. Introduction

The main object of present paper is the following coupled system of equations

iut + uxx + (uu∗x + vv∗x)ux + (uu∗x + vv∗x)xu = 0

ivt + vxx + (uu∗x + vv∗x)vx + (uu∗x + vv∗x)xv = 0
(1)

where the smooth functions u : R2 → C and v : R2 → C satisfy the algebraic
constraint |u|2 + |v|2 = 1. The system (1) is a natural candidate to be a multi-
component generalisation of the classical Heisenberg ferromagnetic equation. It is
well known [32] that the Heisenberg ferromagnetic model is integrable in the sense
of inverse scattering method (ISM). It has a Lax pair related to the algebra su(2).
Since the time the complete integrability of HF equations was discovered, many
attempts for its generalization have been made [20–22]. A well known method
[10, 12, 24, 26–31] to obtain new integrable nonlinear evolution equations (NLEE)
is based on imposing certain algebraic reductions on generic Lax operators. Lax
pairs associated to hermitian symmetric spaces represent a special interest in mod-
ern theory of integrable systems is study of NLEEs [1, 7, 8, 11] since the NLEEs
they produce look relatively simple.
The system (1) is also integrable in the sense of ISM. Its Lax operators are associ-
ated with the symmetric space SU(3)/S(U(1)×U(2)) with a Z2 × Z2 reduction
imposed on them [13, 15, 16].
The purpose of the present paper is to derive the soliton solutions for the integrable
hierarchy of equations related to (1) and analyse the interactions between them.
That is why this work is a natural continuation of our previous papers [13, 15, 16].
In Section 2 we start with some basic facts to be used further in the paper. Firstly
we describe the hierarchy of nonlinear equations related to (1) in terms of recursion
operators. Then we outline the spectral properties of the relevant Lax operator and
formulate direct scattering problem. The spectrum of scattering operatorL consists
of a continuous and a discrete parts. As a result of the Z2 reductions L possesses
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two configurations of discrete eigenvalues: generic ones, coming in quadruplets
±λk, ±λ∗k and purely imaginary ones coming as doublets ±iκj .

In Section 3 we derive the one-soliton solutions for the NLEEs of the hierarchy. For
this to be done we apply the Zakharov-Shabat dressing method [34–36, 38] with
a rational dressing factor with two simple poles. Due to the action of reductions
we have two types of one-soliton solutions: quadruplet solitons correspondinf to
four eigenvalues and doublet ones corresponding to two eigenvalues respectively.
We present explicit expressions for these two types of one-soliton solutions. In
order to construct general multisoliton solutions we discuss two different purely
algebraic constructions: by using a multiple pole dressing factor and by apply-
ing “one-soliton” dressing factors several times consecutively. It turns out that
the properties of the one-soliton solutions to NLEEs with even and odd dispersion
laws differ drastically. For example, the one-soliton solutions for NLEEs with even
dispersion laws are not traveling waves. Even the doublet soliton of equation (1)
exhibits two maxima (respectively minima) for |u1| (respectively for |v1|) which
first come closer to each other and then move away, one to ∞ and the other to
−∞ as time goes to t → ∞. Their velocity, as well as their amplitudes are time
dependent. These properties are similar to the ones of the boomerons and trappons
discovered by Calogero and Degasperis [2–5]. At the same time the soliton solu-
tions to the NLEEs with odd dispersion laws (e.g. the solutions of equation (19))
behave as standard solitons, i.e., they are traveling waves.

Section 4 is dedicated to interactions of quadruplet soliton solutions for the NLEE
with odd dispersion laws. In order to do this we use the classical method of Za-
kharov and Shabat, see the monographs [32,34] for a detailed exposition. Namely,
we calculate the limits of the N -soliton solutions for t → ±∞ assuming that all
solitons move with different velocities. In this way we establish that the solitons
preserve their velocities and amplitudes; the only effect of their interaction consists
in shifts of the relative mass center and the phase of solitons. We provide explicit
expressions for these shifts in terms of the poles µk of the dressing factors.

In Section 5 we briefly discuss the conservation laws of the NLEE and end up with
some conclusions.

2. Preliminaries

In this section we shall expose in brief some basic facts on Lax operators and direct
scattering problem for the integrable hierarchy of the equation (1). In doing this
we shall use a gauge covariant formulation [14, 17–19].
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2.1. Polynomial Lax Pair Related to SU(3)/S(U(1)×U(2))

The NLEEs under consideration in this paper represent a zero curvature condition
[L,A] = 0 for Lax operators L and A in the form

L(λ) = i∂x + λL1(x, t) (2)

A(λ) = i∂t +
N
∑

k=1

λkAk(x, t) (3)

where λ ∈ C is the so-called spectral parameter and the functions L1 and Ak, k =
1, . . . , N take values in sl(3,C). The Lax operators are subject to the following Z2

reductions

L†(λ∗) = −L̆(λ), A†(λ∗) = −Ă(λ) (4)

CL(−λ)C = L(λ), CA(−λ)C = A(λ) (5)

where C = diag (1,−1,−1) and the operation ˘ is defined as given by the formula

L̆(λ)ψ(x, t, λ) ≡ i∂xψ(x, t, λ)− λψ(x, t, λ)L1(x, t, λ).

Due to reduction (4) the matrix coefficients of the Lax pair are hermitian matri-
ces. On the other hand the reduction (5) represents an action of Cartan’s invo-
lutive automorphism which defines the symmetric space SU(3)/S(U(1)×U(2)),
see [23, 25]. It induces a Z2-grading in the Lie algebra sl(3,C)

sl(3) = sl
0(3)⊕ sl

1(3), sl
σ(3) = {X ∈ sl(3) ; CXC = (−1)σX}. (6)

It is evident that L1, Ak ∈ sl
1(3) for k being an odd integer and Ak ∈ sl

0(3)
otherwise. This means that Ak for even k are block-diagonal matrices of the form

Ak =





∗ 0 0
0 ∗ ∗
0 ∗ ∗





while L1 and Ak for odd k have the complementary block structure. In particular,
L1 is written as

L1 =





0 u v
u∗ 0 0
v∗ 0 0



 . (7)

The potential L1 is required to obey the following conditions

1. The eigenvalues ofL1 are 0,±1, i.e., the potential satisfies the characteristic
equation L3

1 = L1.
2. The function L1(x, t)− L± where

lim
x→±∞

L1(x, t) = L± =





0 0 eiφ±

0 0 0
e−iφ± 0 0



 , φ± ∈ R (8)
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is a Schwartz type function, i.e., it is infinitely smooth and tends to 0 faster
than any polynomial when |x| → ∞.

The grading (6) means that any function X with values in sl(3) can be split as
follows

X = X0 +X1, X0,1 ∈ sl
0,1(3). (9)

Let us define the Killing form for sl(3) as follows

〈X,Y 〉 = tr (XY ), X, Y ∈ sl(3).

Then each component X0,1 splits into a term commuting with L1 and its orthogo-
nal complement with respect to the Killing form

X0 = X0,⊥ + κ0L2, L2 = L2
1 −

2

3
11, 〈X0,⊥, L2〉 = 0 (10)

X1 = X1,⊥ + κ1L1, 〈X1,⊥, L1〉 = 0. (11)

As a simple consequence of condition 1 aboveL1 andL2 are normalized as follows

〈L1, L1〉 = 2, 〈L2, L2〉 =
2

3
· (12)

Therefore the coefficients κ0 and κ1 are given by the following equalities

κ0 =
3

2
〈X0, L2〉, κ1 =

1

2
〈X1, L1〉. (13)

The zero curvature condition [L,A] = 0 for the pair (2), (3) leads to certain recur-
rence relations for the matrix coefficients of L and A, see [13]. Resolving them
allows one to express Ak in terms of L1 and its x-derivatives of order up to N − k.
Since the maximal order term in the operatorAmust commute with L1 there exists
two options

a) AN = c2pL2, if N = 2p

b) AN = c2p+1L1, if N = 2p+ 1

where c2p and c2p+1 are constants. Then a more detailed analysis [13] shows that
the NLEEs look as follows

a) iad−1
L1
L1,t +

p
∑

q=1

c2q(Λ1Λ2)
qL2 +

p−1
∑

q=0

c2q+1(Λ1Λ2)
qΛ1L1 = 0

b) iad−1
L1
L1,t +

p
∑

q=1

c2q(Λ1Λ2)
qL2 +

p
∑

q=0

c2q+1(Λ1Λ2)
qΛ1L1 = 0.

(14)
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The integro-differential operators Λ1 and Λ2 appeared above are given by

Λ1 = −iad−1
L1

(

π∂x(·)−
1

2
L1,x∂

−1
x 〈∂x(·), L1〉

)

Λ2 = −iad−1
L1

(

π∂x(· )−
3

2
L2,x∂

−1
x 〈∂x(· ), L2〉

)

(15)

where projection π := ad−1
L1

ad L1
cuts all L1-commuting parts off. The operator

ΛX :=

{

Λ1Λ2X, X ∈ sl
0(3)

Λ2Λ1X, X ∈ sl
1(3)

is called a recursion operator. It can be viewed as an adjoint representation of the
operator L. Its existence manifests the hierarchies associated with NLEE (non-
linear equations, integrals of motion, simplectic forms etc) and thus plays a very
important role in the theory of solitons.

Example 1. Consider the simplest case when N = 2. Then the matrix coefficients
of the second Lax operator A read

A2 = −





1/3 0 0
0 |u|2 − 2/3 u∗v
0 v∗u |v|2 − 2/3



 , A1 =





0 a b
a∗ 0 0
b∗ 0 0



 (16)

a = iux + i(uu∗x + vv∗x)u, b = ivx + i(uu∗x + vv∗x)v. (17)

This L-A pair produces the two-component system
iut + uxx + (uu∗x + vv∗x)ux + (uu∗x + vv∗x)xu = 0

ivt + vxx + (uu∗x + vv∗x)vx + (uu∗x + vv∗x)xv = 0
(18)

we started our paper with (see (1)).

For completeness here we present another member of the hierarchy (14). It is the
simplest NLEE corresponding to an odd dispersion law.

Example 2. Consider the case when f(λ) = −8λ3J , i.e., c3 = −8, c2 = c1 = 0.
Then the corresponding two-component system obtains the form

ut = 8uxxx + 12(uu∗x + vv∗x)uxx + r(u, v)ux + s(u, v)u

vt = 8vxxx + 12(uu∗x + vv∗x)vxx + r(u, v)vx + s(u, v)v
(19)

where
r(u, v) = 3

[

4(|ux|2 + |vx|2) + 5(uu∗x + vv∗x)
2 + 6(uu∗x + vv∗x)x

]

s(u, v) = 3
[

2(uu∗x + vv∗x)xx + 4(|ux|2 + |vx|2)x + 5(uu∗x + vv∗x)
2
x

]

.
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Sometimes it is more convenient to deal with Lax operators written in canonical
gauge. In this gauge the operator (2) looks as follows

L̃(λ) = g−1Lg = i∂x + U0(x, t) + λJ, J = diag (1, 0,−1) (20)

where

g =

√
2

2





1 0 −1

u∗
√
2v u∗

v∗ −
√
2u v∗



 . (21)

The second Lax operator (3) is given by

a) Ã(λ) = i∂t +
N−1
∑

k=0

λkÃk(x, t) + cNλ
NI, N = 2p

b) Ã(λ) = i∂t +

N−1
∑

k=0

λkÃk(x, t) + cNλ
NJ, N = 2p+ 1

(22)

where I = g−1L2 g = diag (1/3,−2/3, 1/3).

2.2. Direct Scattering Problem

In order to formulate a direct scattering problem for L, one needs to introduce the
auxiliary spectral linear system

L(λ)ψ(x, t, λ) = i∂xψ(x, t, λ) + λL1(x, t)ψ(x, t, λ) = 0. (23)

Here ψ denotes a fundamental set of solutions or a fundamental solution for short.
Since the operators (2) and (3) commute ψ also satisfies

A(λ)ψ(x, t, λ) =

(

i∂t +
N
∑

k=1

λkAk(x, t)

)

ψ(x, t, λ) = ψ(x, t, λ)f(λ) (24)

as well. The matrix-valued function

f(λ) = lim
x→±∞

g−1
±

N
∑

k=1

λkAk(x, t)g± (25)

is called dispersion law of the nonlinear equation (14). The unitary matrix

g± = lim
x→±∞

g(x, t) =
1√
2





1 0 −1

0
√
2 eiφ± 0

e−iφ± 0 e−iφ±




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diagonalizes the asymptotics L1,± = limx→±∞ L1(x, t). It can be proven that the
dispersion law of (14) reads

a) f(λ) =

p−1
∑

q=0

c2q+1λ
2q+1J +

p
∑

q=1

c2qλ
2qI

b) f(λ) =

p
∑

q=0

c2q+1λ
2q+1J +

p
∑

q=1

c2qλ
2qI.

(26)

The dispersion law of the two-component system (18) is −λ2I and that of (19) is
−8λ3J . It is evident from (26) that f(λ) obeys the splitting

f(λ) = f0(λ)I + f1(λ)J (27)

which is a result of the Z2 grading (6) of the Lie algebra sl(3).
A special type of fundamental solutions are the so-called Jost solutions ψ± which
are normalized as follows

lim
x→±∞

ψ±(x, t, λ)e
−iλJxg−1

± = 11. (28)

Due to (25) one can show that the asymptotic behavior of ψ± do not depend on
time and thus the definition is correct. The transition matrix

T (t, λ) = [ψ+(x, t, λ)]
−1ψ−(x, t, λ) (29)

is called scattering matrix. It can be easily deduced from relation (24) that the
scattering matrix evolves with time according to the linear differential equation

i∂tT + [f(λ), T ] = 0 (30)

which is integrated straight away to give

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t. (31)

From now on the parameter t will be fixed and we shall omit it to simplify our
notation. Due to reasons of simplicity we set φ+ = φ− = 0 as well.
The action of Z2-reductions (4), (5) imposes the following restrictions

[

ψ†

±(x, λ
∗)
]−1

= ψ±(x, λ),
[

T †(λ∗)
]−1

= T (λ)

Cψ±(x,−λ)C = ψ±(x, λ), CT (−λ)C = T (λ)
(32)

on the Jost solutions and the scattering matrix.
The continuous spectrum of L fills up the real axis in the complex λ-plane. Thus
the λ-plane is divided into two regions denoted by C+ (the upper half plane) and
C− (the lower half plane). These regions represent domains for fundamental so-
lutions χ+(x, λ) and χ−(x, λ) to be analytic functions in C+ and C− respectively
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[16]. The fundamental analytic solutions (FAS) can be constructed by using Gauss
factors in the decomposition of the scattering matrix

T (λ) = T∓(λ)D±(λ)(S±(λ))−1. (33)

The matrices S+ and T+ are upper triangular, S− and T− are lower triangular and
D± are diagonal ones. Then χ+ and χ− are expressed as follows

χ±(x, λ) = ψ−(x, λ)S
±(λ) = ψ+(x, λ)T

∓(λ)D±(λ). (34)

Due to relations (34) the FAS can be interpreted as solutions to a local Riemann
problem

χ+(x, λ) = χ−(x, λ)G(x, λ), G(λ) = (S−(λ))−1S+(λ). (35)

The established interrelation between the inverse scattering method and the Rie-
mann problem plays an important role in constructing solutions to NLEEs through
dressing method.
It can be shown that the reduction conditions (32) and equation (33) lead to the
following demands on the Gauss factors

[

S+(λ∗)
]†

= [S−(λ)]−1, C̃S±(−λ)C̃ = S∓(λ)
[

T+(λ∗)
]†

= [T−(λ)]−1, C̃T±(−λ)C̃ = T∓(λ)
[

D+(λ∗)
]†

= [D−(λ)]−1, C̃D±(−λ)C̃ = D±(λ)

(36)

where

C̃ =





0 0 1
0 1 0
1 0 0



 .

Finally, combining all this information we see that the FAS obey the symmetry
conditions

[

χ+(x, λ∗)
]

= [χ−(x, λ)]−1, Cχ+(x,−λ)C = χ−(x, λ). (37)

3. Dressing Method and Soliton Solutions

As we mentioned in the previous section the inverse scattering method is tightly
related to Riemann-Hilbert problem. The Riemann-Hilbert problem possesses two
types of solutions: regular ones (without singularities) and singular ones. Singular
solutions can be generated by dressing regular solutions with a factor which has
prescribed singularities. The simplest types of singularities are first order poles and
zeroes. It can be proven that they correspond to poles of the resolvent of L. Hence
they are discrete eigenvalues of the Lax operator (2). The discrete eigenvalues of
L form orbits of the reduction group Z2 × Z2. There exist two types of orbits:
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generic orbits containing quadruplets of eigenvalues {±µ,±µ∗} and degenerate
orbits consisting of two imaginary eigenvalues ±iκ (doublets).

There is a very deep connection between singular solutions to Riemann-Hilbert
problem and soliton solutions to the corresponding nonlinear problem. In the
present section we are going to analyze the soliton solutions to the system (14).
For this to be done, we are going to apply the dressing method proposed in [38]
and developed in [28, 29, 35, 36]. We demonstrate that the NLEE (14) has two
types of one-soliton solutions: doublet soliton to be connected with two imaginary
discrete eigenvalues of L and quadruplet soliton connected to four eigenvalues.

3.1. Rational Dressing

The dressing method is an indirect method for solving a NLEE possessing a Lax
representation. This means that it allows one to generate a solution to the NLEE
starting from a known one. Let us assume we know a solution

L
(0)
1 =





0 u0 v0
u∗0 0 0
v∗0 0 0





of (14) and a fundamental solution ψ0(x, t, λ) of the auxiliary linear problems

L(0)(λ)ψ0 = i∂xψ0 + λL
(0)
1 ψ0 = 0

A(0)(λ)ψ0 = i∂tψ0 +
N
∑

k=1

λkA
(0)
k ψ0 = 0.

(38)

Then one constructs another function ψ1(x, t, λ) = Φ(x, t, λ)ψ0(x, t, λ) to be a
common solution to

L(1)(λ)ψ1 = i∂xψ1 + λL
(1)
1 ψ1 = 0

A(1)(λ)ψ1 = i∂tψ1 +
N
∑

k=1

λkA
(1)
k ψ1 = 0

(39)

where the potential

L
(1)
1 =





0 u1 v1
u∗1 0 0
v∗1 0 0




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is to be found. From (38) and (39) it follows that the dressing factor Φ(x, t, λ)
satisfies the following equations

i∂xΦ+ λL
(1)
1 Φ− λΦL

(0)
1 = 0 (40)

i∂tΦ+
N
∑

k=1

λkA
(1)
k Φ− Φ

N
∑

k=1

λkA
(0)
k = 0. (41)

We also assume that the dressing factor is regular at |λ| → 0,∞. Then from (40)
one can derive the following relation between L(1)

1 and L(0)
1

L
(1)
1 (x, t) = Φ(x, t,∞)L

(0)
1 (x, t)Φ†(x, t,∞). (42)

This equation will play a central role in our further considerations since it allows
one to generate a new solution to (14) from the given one L(0)

1 .
Due to the reduction conditions (4), (5) the dressing factor obeys the symmetries

CΦ(x, t,−λ)C = Φ(x, t, λ) (43)

Φ(x, t, λ)Φ†(x, t, λ∗) = 11. (44)

In order to obtain a nontrivial dressing we choose Φ(x, t, λ) as a rational function1

of λ with a minimal number of simple poles. At first we shall consider the case
when these poles are generic complex numbers. Hence the dressing factor looks as
follows

Φ(x, t, λ) = 11 +
λM(x, t)

λ− µ
+
λCM(x, t)C

λ+ µ
(45)

where <µ 6= 0, =µ 6= 0. It is evident that the reduction condition (43) is fulfilled.
On the other hand (44) leads to the conclusion that

Φ−1(x, t, λ) = 11 +
λM †(x, t)

λ− µ∗
+
λCM †(x, t)C

λ+ µ∗
· (46)

The identity Φ(λ)Φ−1(λ) = 11 must hold for any λ. Therefore after equating the
residue at λ = µ∗ to 0 one gets the equation

(

11 +
µ∗M(x, t)

µ∗ − µ
+
µ∗CM(x, t)C

µ∗ + µ

)

M †(x, t) = 0. (47)

The rest of algebraic relations can be reduced to (47) due to the symmetry condi-
tions (4), (5).

1If Φ is λ-independent then it does not depend on x and t either. Thus (42) produces simply a unitary
transformation of L(0)

1 which is not essential because of U(2) gauge symmetry of the model.
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The residue M ought to be singular since otherwise it should be proportional to 11
and the dressing becomes trivial. It suffices to consider the case rankM = 1. Then
M can be decomposed in the following manner

M = |n〉〈m|, |n〉 = (n1, n2, n3)
T , 〈m| = (m∗

1,m
∗

2,m
∗

3). (48)

After substituting this representation into (47) one derives a linear system for the
three-vector |n〉

|m〉 − µ∗|n〉〈m|m〉
2iκ

+
µ∗C|n〉〈m|C|m〉

2ω
= 0 (49)

where we have used the notation ω = <µ, κ = =µ. The solution of (49) reads

|n〉 = 1

µ∗

(〈m|m〉
2iκ

− 〈m|C|m〉
2ω

C

)−1

|m〉. (50)

The vector |m〉 is an element of the projective space CP 2. Indeed, it is evident that
a rescaling |m〉 → h|m〉 with any complex h 6= 0 does not change the matrix M .
Taking into account the ansatz (45) one can rewrite (42) as

L
(1)
1 = (11 +M +CMC)L

(0)
1 (11 +M +CMC)†. (51)

Notice that the dressing procedure preserves the matrix structure of L since the
factor 11 +M +CMC is a block-diagonal matrix.
We have expressed all quantities needed in terms of |m〉 and now it remains to find
|m〉 itself. For that purpose we rewrite equations (40), (41) in the form

Φ(x, t, λ)
(

i∂x + λL
(0)
1

)

Φ−1(x, t, λ) = λL
(1)
1

Φ(x, t, λ)

(

i∂t +
N
∑

k=1

λkA
(0)
k

)

Φ−1(x, t, λ) =
N
∑

k=1

λkA
(1)
k .

(52)

It is obviously satisfied at λ = 0. After equating the residues of (52) at λ = µ∗ to
0 we obtain a set of the differential equations

(

11 +
µ∗M

µ∗ − µ
+
µ∗CMC

µ∗ + µ

)

(

i∂x + µ∗L
(0)
1

)

|m〉 = 0

(

11 +
µ∗M

µ∗ − µ
+
µ∗CMC

µ∗ + µ

)

(

i∂t +
N
∑

k=1

(µ∗)kA
(0)
k

)

|m〉 = 0.

(53)

Taking into acount (47) the equations above can be reduced to
(

i∂x + µ∗L
(0)
1 (x, t)

)

|m(x, t)〉 = h(x, t)|m(x, t)〉
(

i∂t +
N
∑

k=1

(µ∗)kA
(0)
k (x, t)

)

|m(x, t)〉 = h(x, t)|m(x, t)〉
(54)
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for some arbitrary function h. At this point we recall that the vectors in the decom-
position (48) are not uniquely determined. Indeed, the operation |n〉 → B−1|n〉
and |m〉 → B†|m〉 for any nondegenerate 3×3 matrixB produces another decom-
position of M . It is not hard to see that it is always possible to choose B in such a
way that h ≡ 0 is fulfilled. Thus from (54) it follows that |m(x, t)〉 is proportional
to some fundamental solution ψ0(x, t, λ) of the bare linear problem, namely

|m(x, t)〉 = ψ0(x, t, µ
∗)|m0〉 (55)

where |m0〉 ∈ C
3\{0} is a constant vector of integration. The new solution L(1)

1

of (14) and the solution ψ1(x, t, λ) of the corresponding linear system are param-
eterized by a complex number µ and a complex three-vector |m0〉.
Thus we have proved the following

Proposition 3. Let L(0)
1 be a solution of (14) and ψ0(x, t, λ) be a common solu-

tion to (38). Let also µ be a complex number to fulfill <µ 6= 0, =µ > 0 and
|m0〉 ∈ C

3\{0}. Then the matrix-valued function L(1)
1 (x, t) defined by (51) where

M = |n〉〈m| is determined by (50) and (55) is a solution to (14) as well. The cor-
responding fundamental solution ψ1(x, t, λ) of (39) is given by ψ1 = Φψ0 where
Φ(x, t, λ) is determined by (45), (48), (50) and (55).

Let us now consider the case when the poles of the dressing factor are imaginary,
i.e., we have

Φ(x, t, λ) = 11 + λ

(

M(x, t)

λ− iκ
+

CM(x, t)C

λ+ iκ

)

, κ 6= 0. (56)

Then Φ−1 has the same poles as Φ and therefore the equality ΦΦ−1 = 11 already
contains second order poles. In this case the natural requirement of vanishing of
the matrix coefficients before (λ − iκ)−2 and (λ − iκ)−1 leads to the algebraic
relations

MCM † = 0 (57)
(

11 +M +
CMC

2

)

CM †
C+M

(

11 +CM †
C+

M †

2

)

= 0. (58)

As before in order to obtain a nontrivial result M is required to be a degenerate
matrix, i.e., the decomposition (48) holds true. Then relation (57) is rewritten as

〈m|C|m〉 = 0. (59)

The relation (58) in its turn can be easily reduced to the following linear system
for three-vector |n〉

(

11 +
C|n〉〈m|C

2

)

C|m〉 = iσ|n〉 (60)
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by introducing some auxiliary real function σ. That linear system allows one to
express |n〉 through 〈m| and σ, namely

|n〉 =
(

iσ − 〈m|m〉
2

C

)−1

C|m〉. (61)

In order to find |m〉 and σ we turn back to the equations (52). Vanishing of the
second order poles in (52) leads to the conclusion that

|m(x, t)〉 = ψ0(x, t,−iκ)|m0〉 (62)

where |m0〉 is a constant nonzero three-vector. After substituting (62) into (59) and
taking into account (4) one convinces himself that the components of the polariza-
tion vector |m0〉 are no longer independent but satisfy the constraint

〈m0|C|m0〉 = 0 ⇔ |m0,1|2 = |m0,2|2 + |m0,3|2. (63)

The vanishing condition of the first order poles leads to some differential constraint
on σ(x, t) which is integrated to give

σ(x, t) = −κ〈m0|ψ−1(x, t, iκ)ψ̇0(x, t, iκ)C|m0〉+ σ0 (64)

where σ0 ∈ R is a costant of integration.
Thus to calculate the soliton solution itself one just substitutes the result for |n〉 and
|m〉 into M and uses formula (51). As it is seen the new solution is parametrized
by the polarization vector |m0〉, the real number σ0 and the pole iκ. All this can be
formulated as the following

Proposition 4. Let there be given a solution L(0)(x, t) to (14), a common solution
ψ0(x, t, λ) to (38), real numbers κ > 0, σ0 and a complex nonzero vector |m0〉
satisfying (63). Then the function L(1)

1 (x, t) determined by (51), (48), (61), (62)
and (64) is a solution of the system (14) too. The solution ψ1(x, t, λ) of the dressed
linear system (39) is given by ψ1 = Φψ0 where Φ is defined by (56), (48), (61),
(62) and (64).

One can apply the dressing procedure repeatedly to build a sequence of exact so-
lutions

L
(0)
1

Φ1−→ L
(1)
1

Φ2−→ . . .
ΦN−→ L

(N)
1 . (65)

More precisely this alternative procedure will be explained in Section 4.

3.2. Soliton Solutions

Let us apply the dressing procedure to the following seed solution

L
(0)
1 (x, t) =





0 0 1
0 0 0
1 0 0



 (66)
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of equation (14). In this case a fundamental solution to (38) reads

ψ0(x, t, λ) =









cos z(x, t)e
if0(λ)t

3 0 i sin z(x, t)e
if0(λ)t

3

0 e
−2if0(λ)t

3 0

i sin z(x, t)e
if0(λ)t

3 0 cos z(x, t)e
if0(λ)t

3









(67)

where z(x, t) = λx+ f1(λ)t. We recall that f0(λ) and f1(λ) are even and odd part
of the dispersion law induced by the Z2 grading of sl(3), see (27).
We are going to consider the generation of a quadruplet soliton first. In this case
one uses factor (45). It is convenient to decompose the polarization vector |m0〉
according to the eigensubspaces of the endomorphism ψ0 (67)

|m0〉 = α





1
0
1



+ β





1
0

−1



+ γ





0
1
0



 (68)

where α, β, γ are arbitrary complex constants.
If the vector |m0〉 is proportional to one of the eigenvectors of the endomorphism
ψ0, then the corresponding matrixM does not depend on the variables x and t (due
to the projective nature of the vector |m〉) and the corresponding solution (51) is a
simple unitary rotation of the constant solution L(0)

1 .
Thus elementary solitons correspond to vectors |m0〉, belonging to essentially two-
dimensional invariant subspaces of ψ0, i.e., they correspond to polarization vectors
with only one zero coefficient in the expansion (68). Let us consider each of these
three cases in more detail.

Case i) α 6= 0, β 6= 0, γ = 0

The one-soliton solution is given by

u1(x, t) = 0

v1(x, t) = exp

{

4i arctan

(

κ cos(2ωx+ 2fR1 (µ)t+ φα − φβ)

ω cosh(2κx+ 2f I1 (µ)t+ ln |α/β|)

)}

(69)

where φα = argα, φβ = arg β. Here f
R
1 (λ) and f

I
1 (λ) are the real and the

imaginary part of the polynomial f1(λ) (respectively f
R
0 (λ) and f

I
0 (λ) stand for the

real and imaginary part of f0(λ) to be used later on). If the dispersion law of NLEE
is an even polynomial (f1(λ) ≡ 0) then the function v1 becomes stationary

v1(x, t) = exp

{

4i arctan

(

κ cos(2ωx+ φα − φβ)

ω cosh(2κx+ ln |α/β|)

)}

. (70)

A plot of that solution is presented in Fig. 1. It is easy to check that u = 0,
v = exp(if(x)) is an exact solution of (18) for any differentiable function f(x)
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Figure 1. Real and imaginary parts of the component v1 in 70 as a
function of x. Here κ = 1, ω = 10−3, α = 1, β = 1 + i.

tending to 0 when x → ±∞. This resembles the case of the three-wave equa-
tion [33] where one wave of an arbitrary shape is an exact solution of the system
and the two other waves are identically zero. The solution (70) has a simple spec-
tral characterisation and an explicitly given analytic fundamental solution of the
corresponding linear problem.
If the dispersion law contains odd powers of λ as well then the elementary soliton
is no more stationary. For example in the case of equation (19) it reads

u1(x, t) = 0, v1(x, t) = exp(4i arctan ζcub(x, t))

ζcub(x, t) =

[

κ cos 2ω[x+ 8(3κ2 − ω2)t+ (φα − φβ)/2ω]

ω cosh 2κ[x+ 8(κ2 − 3ω2)t+ ln |α/β|/2κ]

]

.
(71)

Case ii) α 6= 0, β = 0, γ 6= 0

In this case the solution looks as follows

u1(x, t) =
4iωκQ∗

gen exp i{ωx+ (fR0 (µ) + f
R
1 (µ))t+ φα − φγ}

(ω − iκ)Q2
gen

v1(x, t) = 1− 8ωκ2

(ω − iκ)Q2
gen

(72)

where φα = argα, φγ = arg γ and

Qgen = 2ωeκx+(fI
0
(µ)+f

I

1
(µ))t+ln |α/γ| + (ω + iκ)e−κx−(fI

0
(µ)+f

I

1
(µ))t−ln |α/γ|.
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Figure 2. Contour plot of |u1|2 (left panel) and |v1|2 (right panel) for
a generic soliton solution (73) as a function of x and t where α = γ =
κ = ω = 1.

In particular, when f(λ) = −λ2I , i.e., f0(λ) = −λ2 and f1(λ) = 0 hold, we obtain
a solution to (18)

u1(x, t) =
4iωκQ∗ exp i{ωx+ (κ2 − ω2)t+ φα − φγ}

(ω − iκ)Q2

v1(x, t) = 1− 8ωκ2

(ω − iκ)Q2

(73)

where

Q = 2ωeκ(x−2ωt)+ln |α/γ| + (ω + iκ)e−κ(x−2ωt)−ln |α/γ|.

Contour plots of |u1|2 and |v1|2 of the solutions (73) are shown in Fig. 2.
When the dispersion law is odd, say f1(λ) = −8λ3, the quadruplet solution repre-
sents a travelling wave of the form

u1(x, t) =
4iωκQ∗ exp iω[x+ 8(3κ2 − ω2)t+ (φα − φγ)/ω]

(ω − iκ)Q2

v1(x, t) = 1− 8ωκ2

(ω − iκ)Q2

(74)

where

Q = 2ωeκ(x+8(κ2−3ω2)t+ln |α/γ|/κ) + (ω + iκ)e−κ(x+8(κ2−3ω2)t+ln |α/γ|/κ).

This is an elementary soliton for the cubic flow NLEE (19).
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Case iii) α = 0, β 6= 0, γ 6= 0

The solution now can be obtained from the solution in the case (ii), by changing
α→ β and x→ −x.
In the cases ii) the solution (73) is a soliton of width 1/κ moving with velocity 2ω.
The corresponding soliton in the case iii) moves with a velocity −2ω.
In the generic case, when all three constants are non-zero, the solution represents a
nonlinear deformation of the above described solitons. For κ > 0 it may be viewed
as a decay of unstable time independent soliton from the case i) into two solitons,
corresponding to the cases ii) and iii) (see Fig. 2). For κ < 0, the solution is a
fusion of two colliding solitons into a stationary one.
Let us now consider dressing by a factor with two imaginery poles (doublet case),
i.e., µ = iκ. There are two essentially different cases.

Case i) α 6= 0, β 6= 0, γ = 0

From (63) it follows that |m0,1| = |m0,3|. It suffices to pick up m0,1 = 1 and the
third component is m0,3 = exp(iϕ), ϕ ∈ R. The doublet solution reads

u1(x, t) = 0, v1(x, t) = exp(4i arctanΞgen(x, t))

Ξgen(x, t) =
σ0 − 2κ(x+ ḟ1(iκ)t) sinϕ

cosh 2(κx+ f
I
1 (iκ)t) + sinh 2(κx+ f

I
1 (iκ)t) cosϕ

·
(75)

If the dispersion law of NLEE is even polynomial, i.e., f1(λ) ≡ 0, then v1 becomes
stationary

v1(x, t) = exp

{

4i arctan

(

σ0 − 2κx sinϕ

cosh 2κx+ sinh 2κx cosϕ

)}

. (76)

Figure 3 presents the argument and the imaginary part of v1(x) in the stationary
case as functions of x and the phase ϕ.
As in the quadruplet case if the dispersion law is an odd polynomial the doublet
solution is time-depending. Let us consider the simplest example f1(λ) = −8λ3

corresponding to equation (19). Now (75) obtains the form

u1(x, t) = 0, v1(x, t) = exp(4i arctanΞcub(x, t))

Ξ cub(x, t) =
σ0 − 2κ(x+ 24κ2t) sinϕ

cosh 2κ(x+ 8κ2t) + sinh 2κ(x+ 8κ2t) cosϕ
·

(77)

Case ii) Generic Doublet

Now let us assume m0,2 6= 0. For simplicity we fix m0,2 = 1. Then the norms of
m0,1 and m0,3 are interrelated through the equality

|m0,1|2 − |m0,3|2 = 1.
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Figure 3. Plots of the argument (left panel) and Im v1(x) (right panel)
for the stationary solution (76 ) as a function of x and ϕ, κ = σ = 1.

This is why it proves to be convenient to parametrize them as follows

m0,1 = cosh θ0e
i(ϕ0+ϕ̃), m0,3 = | sinh θ0|ei(ϕ0−ϕ̃) (78)

where θ0, ϕ0 and ϕ̃ are arbitrary real numbers. Then the doublet soliton solution
reads

u1(x, t) =
2∆∗

∆2
ei(f0(iκ)t+ϕ0) [sinh θ+ cos ϕ̃+ i sinh θ− sin ϕ̃]

v1(x, t) = 1 +
2(2iσ − 1)

∆
+

4iσ(iσ − 1)

∆2

(79)

where

∆(x, t) = cosh2 θ+ cos2 ϕ̃+ cosh2 θ− sin2 ϕ̃− iσ

σ(x, t) = σ0 + κḟ I0 (iκ)t+ κ
(

x+ ḟ1(iκ)t
)

sinh 2θ0 sin 2ϕ̃

θ±(x, t) = κx+ f
I
1 (iκ)t± θ0.

Let us consider the special case when the dispersion law is −λ2I . The solution (79)
is significantly simplified if in addition one assumes that m0,3/m0,1 > 0 (ϕ̃ = 0).
The result reads

u1 =
2
(

cosh2(κx+ θ0) + i(σ0 − 2κ2t)
)

(

cosh2(κx+ θ0)− i(σ0 − 2κ2t)
)2 ei(κ

2t+ϕ0) sinh(κx+ θ0)

v1 =

(

cosh2(κx+ θ0) + i(σ0 − 2κ2t)

cosh2(κx+ θ0)− i(σ0 − 2κ2t)

)2

(80)

− 2
(

cosh2(κx+ θ0)− i(σ0 − 2κ2t)
)2 ·



On Soliton Interactions for the Hierarchy of a Generalised Heisenberg . . . 105

Figure 4. Contour plot of <u1(x, t) (left panel) and < v1(x, t) (right
panel) for doublet soliton (81) as functions of x and t. Here κ = 0,
σ0 = 5 and θ0 = 0.

A plot of <u1(x, t) and < v1(x, t) is shown in Fig. 4.

It proves to be of some interest to consider the odd dispersion case as well. In the
simplest nontrivial situation when f1(λ) = −8λ3 (equation (19)) we have

u1 =
2
(

cosh2(κx+ 8κ3t+ θ0) + iσ0
)

(

cosh2(κx+ 8κ3t+ θ0)− iσ0
)2 eiϕ0 sinh(κx+ 8κ3t+ θ0)

v1 =

(

cosh2(κx+ 8κ3t+ θ0) + iσ0

cosh2(κx+ 8κ3t+ θ0)− iσ0

)2

(81)

− 2
(

cosh2(κx+ 8κ3t+ θ0)− iσ0
)2 ·

We have assumed above that ϕ̃ = 0.

Remark 5. Let us make a few short remarks on the behaviour of doublet soliton
(81). First of all it is evident that this is not a travelling wave solution. Moreover,
as it is seen from Fig. 5 the component |u1(x, t)|2 has two symmetric maxima and
one minimum at the origin (respectively |v1(x, t)|2 has two symmetric minima and
one maximum at the origin). The value of the maximum of |u1(x, t)|2 (respectively
the minimum of |v1(x, t)|2) first increases with time (σ(t) > 0) and then decreases
(σ(t) < 0). The maxima positions of u1 depend on t according to

ξ0(t) = −θ0
κ

+
1

κ
ln

(
√

1 +
√

1 + σ2(t) + 4
√

1 + σ2(t)

)

(82)
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Figure 5. Contour plot of |u1(x, t)|2 (left panel) and |v1(x, t)|2 (right
panel) for doublet soliton solution (81) as a function of x for several
values of t: t = 0, 1, 5, 10, 20, 40.

Figure 6. The soliton velocity v(t) and position of the maxima ξ0(t)
of solution (81) as a functions of t. Here κ = σ0 = 1, θ0 = 0 and
ϕ̃ = 0.

where σ(t) = σ0 − 2κ2t. The soliton velocity v := dξ0/dt is not constant but
changes with t as given by

v(t) = − 2κ2tσ(t)

1 + σ2(t)

4
√

1 + σ2(t)
√

1 +
√

1 + σ2(t)
· (83)

Such behavior resembles the boomerons and the trappons [4, 5]. In Fig. 6 it is
plotted the t-dependence of the soliton velocity.
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3.3. Multisoliton Solutions

As we have already mentioned the dressing procedure can be applied several times
consequently. Thus after dressing the one-soliton solution one derives a two-
soliton solution, after dressing the two-soliton solution one obtains a three-soliton
solution and so on. Of course, in doing this one is allowed to apply either of dress-
ing factors (45) and (56). Therefore the multisoliton obtained will be a certain
combination of quadruplet and doublet solitons. Another way of derivation the
multisoliton solution consists in using a dressing factor with a proper number of
poles

Φ = 11 + λ

N1
∑

k=1

(

Mk

λ− µk
+

CMkC

λ+ µk

)

+ λ

N2
∑

l=1

(

Pl

λ− iκl
+

CPlC

λ+ iκl

)

. (84)

As it follows from (84) the multisoliton solution obtained will be a mixture of N1

quadruplet solitons and N2 doublet ones. In order to determine the residues of Φ
one follows basically the same steps as in the case of a two-poles dressing factor.
Firstly, the identity ΦΦ−1 = 11 implies that the residues of Φ and Φ−1 fulfill some
algebraic restrictions. For example we have

lim
λ→µk

(λ− µk)ΦΦ
−1 =MkΦ

−1
k = 0, k = 1, . . . , N1 (85)

where

Φ−1
k = 11 + µk

N1
∑

r=1

(

M †
r

µk − µ∗r
+

CM †
rC

µk + µ∗r

)

+ µk

N2
∑

l=1

(

P †

l

µk + iκl
+

CP †

l C

µk − iκl

)

.

Apart of this type of constraints we have another one originating from vanishing
of the coefficients before the imaginery poles

lim
λ→iκl

(λ− iκl)
2ΦΦ−1 = (iκl)

2PlCP
†

l = 0, l = 1, . . . , N2 (86)

lim
λ→iκl

∂λ[(λ− iκl)
2ΦΦ−1] = iκlΘlCP

†

l C+ iκlPlCΘ†

lC = 0 (87)

where

Θl = 11 + iκl

N1
∑

k=1

(

Mk

iκl − µk
+

CMkC

iκl + µk

)

+ Pl +
CPlC

2

+iκl

N2
∑

s6=l

(

Ps

i(κl − κs)
+

CPsC

i(κl + κs)

)

.

Vanishing of the rest of poles of ΦΦ−1 leads to algebraic constraints which coin-
cide with (85)–(87) due to the action of Z2 reductions.
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Since Mk(x, t) and Pl(x, t) must be degenerate matrices one introduces their fac-
torizations Mk = |nk〉〈mk| and Pl = |ql〉〈pl|. Substituting it into (85)–(87) we
reduce the first and the third constraint to linear systems for |nk〉 and |ql〉

|mk〉 =
N1
∑

r=1

Brk|n r〉+
N2
∑

l=1

Dsk|q s〉

C|pl〉 =
N1
∑

r=1

Erl|n r〉+
N2
∑

s=1

Fsl|q s〉
(88)

where the matrix coefficients read

Brk := µ∗k

(〈m r|mk〉
µr − µ∗k

− 〈m r|C|mk〉
µr + µ∗k

C

)

Dsk := µ∗k

( 〈p s|mk〉
iκs − µ∗k

− 〈p s|C|mk〉
iκs + µ∗k

C

)

Erl := −iκl

(〈m r|C|pl〉
iκl − µk

+
〈m r|pl〉
iκl + µk

C

)

, Fss := iσs −
〈p s|ps〉

2
C

Fsl := κl

(〈p s|C|pl〉
κs − κl

− 〈p s|pl〉
κs + κl

C

)

, s 6= l.

By inverting the linear system (88) we can express |n r〉 and |q s〉 through all |mk〉,
|p l〉 and σl and that way determine the dressing factor in terms of the latter. The
vectors |mk〉 and |p l〉 as well as the functions σl can be found from the natural
requirement of vanishing of the poles in (52). The result reads

|mk(x, t)〉 = ψ0(x, t, µ
∗

k)|mk,0〉
|p l(x, t)〉 = ψ0(x, t,−iκl)|p l,0〉
σl(x, t) = −κl〈pl,0|ψ−1(x, t, iκl)ψ̇0(x, t, iκl)C|pl,0〉+ σl,0.

(89)

Analogously to the two-poles case the components of |pl〉 are not independent. As
a result of (86) that the following relations holds true

〈pl(x, t)|C|pl(x, t)〉 = 〈pl,0|C|pl,0〉 = 0. (90)

Thus we have proved that the dressing factor in the multiple poles case is deter-
mined if one knows the initial fundamental solution ψ0(x, t, λ). The multisoliton
solution itself can be derived through the following formula

L
(1)
1 (x, t) = Φ(x, t,∞)L

(0)
1 (x, t)Φ†(x, t,∞) (91)

where

Φ(x, t,∞) = 11 +

N1
∑

k=1

(Mk +CMkC) +

N2
∑

l=1

(Pl +CPlC).
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From all said above it follows that the algorithm for obtaining the multisoliton
solution can be presented symbolically as follows

L
(0)
1 −→ {|mk〉}N1

k=1, {|pl〉}
N2

l=1, {σl}
N2

l=1

−→ {|nk〉}N1

k=1, {|ql〉}
N2

l=1 −→ {Mk}N1

k=1, {Pl}N2

l=1 −→ L
(1)
1 .

4. Interactions of Quadruplet Solitons

In this section we aim to study the interactions of solitons we have derived. We
shall restrict ourselves with quadruplet solitons for NLEEs with odd dispersion
laws. This is the simplest case since the solitons are travelling wave-type solutions.
The interactions of the other types of solitons require a special treatment and will
be done elsewhere.

Our study will be based on the Zakharov-Shabat scheme [34] applied to the re-
cursive procedure (65). Their approach consists in calculating the asymptotics of
generic N -soliton solution for t→ ±∞ and establishing the pure elastic character
of the interactions of generic soliton, i.e., solitons travelling at different velocities.
The pure elastic character of the soliton interactions is demonstrated by the fact
that for t → ±∞ the N -soliton solution splits into a sum of N one soliton solu-
tions preserving its amplitudes and velocities. The only effect of the interaction
consists in shifting the center of mass and the initial phase of the solitons.

The one-soliton dressing factor corresponding to the quadruplet case with poles at
±µk is given by

Φk(x, t, λ, µk) = 11 +
λ

λ− µk
Mk(x, t) +

λ

λ+ µk
CMk(x, t)C. (92)

The residues Mk(x, t) = |nk〉〈mk| are determined by the following equalities

|nk〉 =
1

µ∗k

(〈mk|mk〉
2iκk

− 〈mk|C|mk〉
2ωk

C

)−1

|mk〉

|mk(x, t)〉 = ψ0(x, t, µk)|mk0〉, |mk0〉 =





αk + βk
γk

αk − βk



 .

(93)

Let us now outline the alternative procedure for constructing the N -soliton solu-
tions of the NLEE (14). The idea is to apply subsequently N times the the one-
soliton dressing. For simplicity we assume that all N solitons are of quadruplet
type. As a result the sequence of mappings (65) allows us to constructs a sequence
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of Lax operators with potentials L(k)
1 , k = 1, . . . , N and eigenfunctions

χ±

(k)(x, t, λ) = Φk(x, t, λ, µk)Φk−1(x, t, λ, µk−1) . . .Φ1(x, t, λ, µ1)
(94)

×ψ0(x, t, λ)Φ
†

1,−(λ, µ1) . . .Φ
†

k−1,−(λ, µk−1)Φ
†

k,−(λ, µk)

where

Φk,−(λ, µk) = lim
x→−∞

Φk(x, t, λ, µk). (95)

The dressing factors Φk(x, t, λ, µk) are constructed in analogy with (92) as follows

Φk(x, t, λ, µk) = 11 +
λ

λ− µk
Mk(x, t) +

λ

λ+ µk
CMk(x, t)C

Mk(x, t) =
1

µ∗k

(〈mk|mk〉
2iκk

− 〈mk|C|mk〉
2ωk

C

)−1

|mk〉〈mk|

|mk〉 = Φk−1(x, t, µk, µk=1) . . .Φ1(x, t, µk, µ1)|mk〉.

(96)

Thus for the N -soliton potential we obtain

L
(N)
1 (x, t) = lim

λ→∞

χ±

(N)(x, t, λ)L
(0)
1 .χ̂±

(N)(x, t, λ). (97)

Next we recall that we are considering NLEE with odd dispersion laws (14b).
Their one-soliton solutions are traveling waves and depend on Zk = x − Vkt,
where Vk = 1/κk im f1(µk). In particular, for the equation (19) f1(λ) = −8λ3

and Vk = 8(3µ2k − κ2k). Now let us to pick up the trajectory of the N -th soliton:
ZN ≡ x − 2ωN t/3 = fixed and evaluate the asymptotics of L(N)

1 (x, t) for t →
±∞ for fixed ZN . This will allow us to see what are the effects of the soliton
interactions on the N -th soliton.

In what follows we will assume that all solitons move with different velocities, i.e.,
Vj 6= Vk for k 6= j. It is natural to split the solitons in two groups

M+ ≡ {Vk ; Vk > VN}, M− ≡ {Vk ; Vj < ωN} (98)

i.e., the solitons belonging to M+ are moving faster than the N -th soliton, while
the ones belonging to M− are slower.

Now we are able to calculate the limits of Φk(x, t, λ) for t → ±∞ for fixed ZN .
To do this we firstly need to obtain the limits of the one-soliton dressing factor for
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x→ ±∞. It can be verified that

Φk,−(λ, µk) := lim
x→−∞

Φk(x, t, λ) =





ck(λ) 0 −c′k(λ),
0 1 0

−c′k(λ) 0 ck(λ)





Φk,+(λ, µk) := lim
x→∞

Φk(x, t, λ) =





ck(λ) 0 c′k(λ)
0 1 0

c′k(λ) 0 ck(λ)





(99)

where

ck(λ) =
µk
µ∗k

λ2 − |µk|2
λ2 − µ2k

, c′k(λ) = −µk
µ∗k

λ(µk − µ∗k)

λ2 − µ2k
·

Note that the asymptotics Φk,±(λ, µk) do not depend upon the polarization vectors
|mk0〉 and that they commute for different values of λ. This allows us to describe
explicitly the N -soliton interactions of quadruplet solitons.

The action of Φk,±(λ, µk) on the polarization vectors produces the equalities

Φk,±(λ, µk)





αk + βk
γk

αk − βk



 =





α±

k + β±

k

γk
α±

k − β±

k





α±

k

αk

=
µk
µ∗k

λ± µ∗k
λ± µk

,
β±k
βk

=
µk
µ∗k

λ∓ µ∗k
λ∓ µk

·

(100)

Next we have to evaluate the asymptotics of |mk(x, t)〉 when t → ±∞ along the
trajectory ZN (x, t) = const. This is done recursively using (99). Skipping all
technical details here we get

|mN (x, t)〉 '
t→∞

∏

j∈M+

Φ+(µN , µj)
∏

j∈M−

Φ−(µN , µj)|mN (x, t)〉

|mN (x, t)〉 '
t→−∞

∏

j∈M+

Φ−(µN , µj)
∏

j∈M−

Φ+(µN , µj)|mN (x, t)〉.
(101)
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Then from (100) and (101) one deduces that

α+
N

α
=

N
∏

k=1

µk
µ∗k

∏

j∈M+

AN,j

∏

j∈M−

BN,j

α−

N

α
=

N
∏

k=1

µk
µ∗k

∏

j∈M+

BN,j

∏

j∈M−

AN,j

β+N
β

=
N
∏

k=1

µk
µ∗k

∏

j∈M+

BN,j

∏

j∈M−

AN,j

β−N
β

=

N
∏

k=1

µk
µ∗k

∏

j∈M+

AN,j

∏

j∈M−

BN,j

AN,j =
µN + µ∗j
µN + µj

, BN,j =
µN − µ∗j
µN − µj

·

(102)

As a result we obtain that: i) the soliton interactions are purely elastic, and ii) their
effect is shifts of the relative center of mass and the phase δN = argα − arg β of
the solitons

Z±

N = ZN ∓
∑

j∈M+

zN,j ±
∑

j∈M−

zN,j

δ±N = δN ±
∑

j∈M+

φN,j ∓
∑

j∈M−

φN,j

zN,j =
1

2κN
(ln |AN,j | − ln |BN,j |), φN,j = arg(AN,j)− arg(BN,j).

(103)

5. Integrals of Motion

Here we will sketch briefly the direct method for finding integrals of motion, intro-
duced by Drinfel’d and Sokolov [6]. We will apply it to the system (18). In order to
do that it proves to be technically more convenient to deal with the Lax pair (20),
(22). We will use the transformation P(x, t, λ) that diagonalises simultaneously
the Lax pair L̃ and Ã

L = P
−1L̃P = i∂x + λJ + L0 +

L1

λ
+ · · ·

A = P
−1ÃP = i∂t + λ2I + λA−1 +A0 +

A1

λ
+ · · · .

(104)
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Here all matrix coefficients Lk, A−1 and Ak, k = 0, 1, . . . are diagonal. Using the
asymptotic expansion for P(x, t, λ)

P(x, t, λ) = 11 +
p1(x, t)

λ
+
p2(x, t)

λ2
+ · · · (105)

one can get a set of recurrence relations

U0 + Jp1 = L0 + p1J (106)

ip1,x + U0p1 + Jp2 = L1 + p1L0 + p2J (107)
...

ipk,x + U0pk + Jpk+1 = Lk + pk+1J +

k−1
∑

m=0

pk−mLm (108)

...

Here we assume that all coefficients pl (l = 1, 2, . . .) are off-diagonal matrices.
In order to solve the recursion relations above, we will split each relation into a
diagonal and off-diagonal part. For example, treating this way the first relation
above one gets

L0 = Ud
0 , U f

0 = −[J, p1] (109)

where the superscripts d and f above denote projection onto diagonal and off-
diagonal part of a matrix respectively. Taking into account the explicit form of U0

for L0 we have

L0 =
i

2
(uu∗x + vv∗x)





1 0 0
0 −2 0
0 0 1



 . (110)

Thus as a density of our first integral we can choose: I0 = u∗ux + v∗vx. It
represents momentum density of our system. For the stationary solutions (70) and
(76) the momentum density is depicted on Fig. 7. It is evidential, that the integrals
of motion are well localised function of x.
Similarly, for the second integral density one gets

I1 = |uu∗x + vv∗x|2 + 4|uvx − vux|2.

In general, the k integral of motion can be calculated through the formula

Lk =
(

U f
0pk

)d
. (111)

The matrix pk in its turn is obtained from the following recursive formula

pk = −ad−1
J

(

ipk−1,x + (U0pk−1)
f −

k−1
∑

m=0

pk−1−mLm

)

. (112)
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Figure 7. Plots of the density of the first integral of motion as a
function of x evaluated on the stationary quadruplet soliton (70) for
α = β = γ = ω = 1, δ = 0 (left panel) and for the stationary doublet
soliton (76) for κ = σ0 = 1, φ = 0 (right panel).

Note, that the zero curvature representation is gauge invariant, i.e., [L,A] = 0 is
fulfilled. Since [Lk,Al] = 0 the commutativity of L and A is equivalent to the
following requirements

∂xA−1 = 0, ∂tLk − ∂xAk = 0, k = 0, 1, . . . (113)

Hence Lk represent densities of the integrals of motion we are interested in.

6. Conclusions

The soliton solutions for a hirarchy of NLEEs related to the symmetric space
SU(3)/S(U(1)×U(2)) are constructed. In order to obtain the soliton solutions
we have applied the dressing procedure with a two-poles dressing factor. It has
been shown that there exist two types of one-soliton solutions: quadruplet solitons
which are associated with four symmetrically located eigenvalues of L and doublet
solitons which are associated with a pair of purely imaginary eigenvalues. This re-
markable fact is a consequence of the simultaneous action of two Z2 reductions
on the Lax pair. The properties of the elementary solitons depend crucially upon
the symmetry properties the dispersion law. For example, if the dispersion law is
an even polynomial then the elementary soliton of the first type will be stationary
(see formula (70)) otherwise it is time-dependent (fomula (71)). In the case of the
doublet type solitons the situation changes significantly – the components of the
polarization vector |m0〉 are no longer independent, see (63). This is why we have
only two cases possible: generic case and a degenerate case. In the latter case the
doublet soliton is stationary if f(λ) is an even polynomial, otherwise they are time-
depending. In the generic case a new phenomenon arises. When the dispersion law
is an even polynomial the soliton is not a travelling wave. Its behaviour resembles
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that of trapons and boomerons – the soliton velocity is not fixed but varies with
time.
We have described the quadruplet soliton interactions for NLEE with odd disper-
sion laws by calculating explicitly their asymptotics along the soliton trajectories
in the generic case (different soliton velocities). The important result consisted in
the following:

i) the N -soliton interactions are purely elastic and always split into sequences
of elementary two-soliton interactions

ii) the effect of each two-soliton interaction consists in shifts of the relative
center of mass and relative phases of each of the solitons

iii) the corresponding shifts are different from the ones for the NLS and Heisen-
berg ferromagnetic equations.
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1. Introduction

This paper is a natural continuation of our articles [21], where a gauge covariant
approach to the generating operator was proposed for the case of the Zakharov-
Shabat system and [22], where the results obtained in [21] have been generalized
to the cases of the so-called Caudrey-Beals-Coifman system. Here we consider
the nonlinear evolution equations (NLEEs), solvable through the inverse scattering
method (ISM) for the linear system

Lψ(x, t, λ) ≡

(

i
d

dx
+ U(x, t, λ)

)

ψ(x, t, λ) = 0

U(x, t, λ) = U0(x, t) + λU1, U0(x, t) = [U1, Q(x, t)].

(1)

If we choose U1 to be constant diagonal matrix with real eigenvalues the system
(1) is the generalized Zakharov-Shabat system [42, 45]. It allows one to solve the
class of N -wave equations which have important physical applications.
As has been shown by Shabat [37] the difficulties of solving the inverse scatter-
ing problem for (1) could be overcome if we are able to reduce the solution of
the relevant nonlinear evolution equation (NLEE) to a Riemann-Hilbert problem
(RHP)

χ+(x, t, λ) = χ−(x, t, λ)G(λ, t), λ ∈ R. (2)

In the above χ±(x, t, λ) are the fundamental analytic solutions (FAS), that is, fun-
damental solutions of (1) that allow analytic extension in λ for λ ∈ C+ and λ ∈ C−

– the upper and lower half-plane.
In particular, using this fact, Zakharov and Shabat developed the well known dress-
ing method, which became the most efficient method for constructing the soliton
solutions of the NLEEs we speak about.
Later Caudrey, Beals and Coifman [3, 4, 6] studied the inverse scattering problem
for a more general system which has also the form of (1) but now the eigenvalues
of U1 were assumed to be complex. They succeeded to construct the FAS which
now have analyticity properties only inside certain sectors in the complex λ-plane
and the RHP is formulated on the rays separating these sectors.
The results of Caudrey-Beals-Coifman were extended from sl(n) to any semisim-
ple Lie algebra in any faithful representation [22]. In [22] we have assumed that
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Q(x, t) is an arbitrary element of a semisimple complex Lie algebra g of rank r
and U1 is a regular element of the Cartan subalgebra h of g.
Applying the inverse scattering method (ISM) to the CBC system one can integrate
generic NLEEs. The simplest of them are analogous to the N -wave equations but
with complex-valued ‘group velocities’. Until now we know nothing about physi-
cal applications of such NLEEs, though they are completely integrable Hamilton-
ian systems whose action-angle variables have been constructed in [5].
The situation changes if we apply the reduction group technique [32] and request
that the Lax operator possesses Zh or Dh symmetry. The importance of such
Lax operators became clear due to the pioneer paper of Mikhailov [32] where he
discovered the integrability of the two-dimensional Toda field theories (2DTFT).
Mikhailov was the first to show that the ISM for Zh and Dh-reduced Lax operators
can be reduced to a RHP on a set of 2h rays starting from the origin and closing an-
gles π/h. Next, using the Zakharov-Shabat dressing method [45], he constructed
the soliton solutions of the 2DTFT and proved that there are gaps in the sequences
of integrals of motion.
Soon the results of [32] were generalized to any simple Lie algebra and draw a large
attention, see [13,33–35] and the references therein. Of course, each 2DTFT is just
one representative from a hierarchy of NLEEs that are related to the corresponding
Lax operator.
One of the aims of the present paper is to provide a tool to study the other members
of these hierarchies. To this end we have to reformulate most of the results we have
for the general system to the special but important case when the Lax operator is
subject to additional group of symmetries, among which are Zh and Dh symmetries
proposed by Mikhailov [32].
Our second aim is to generalize the AKNS method [1, 26] and to construct the
recursion operators for the NLEE with Zh and Dh symmetries. The recursion
operators (see the monographs [7,20,27] and [1,8,12,14–16,19,21,22,24,26]) are
an effective tool to generate both the NLEEs and their Hamiltonian hierarchies [15,
16, 19, 28, 29]. We confirm and generalize previous results on recursion operators
of reduced systems [11, 13, 18, 23, 38, 39], especially their factorization properties.
In Section 2 we give some Lie algebraic preliminaries and introduce the notion of
Mikhailov reduction group [32]. In Section 3 we outline the spectral theory for the
Lax operators, introduce their FAS and the scattering data. Section 4 demonstrates
that the FAS satisfy a local RHP on a set of 2h rays passing through the origin and
closing angles π/h [32]. Section 5 is dedicated to the calculation of the recursion
operators introduced by [1]. However, the AKNS method needs generalization,
because we are dealing with a Zh-reduced Lax pair that take values in the graded
algebra. The recursion operators that are obtained have substantially new structure
as compared to the AKNS ones. The recursion operators now factorizes into a
product of h more elementary operators. For the first time such factorization has
been observed studying a particular case in [11]. We also show that to each simple
Lie algebra of rank r one can relate r fundamental recursion operators Λmk

and
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a master recursion operators Λ generating both NLEEs of MKdV type and their
Hamiltonian hierarchies. In Section 6 we derive three types of Wronskian relations
for the Lax operator L̃. The first type allows one to interpret the mapping F :
M → T from the manifold of allowed potentials M to the set of scattering data
T as a generalized Fourier transform (GFT). It allows also to introduce the so-
called ‘squared solutions’ of L̃, called also generalized exponentials or adjoint
solutions. The second type of Wronskian relations permits to establish that the
same GFT allows one to analyze the mapping δF : δM → δT between the
variations of the potentials and the relevant variations of scattering data. The third
type of Wronskian relations is useful for the analysis of the conservation laws.
Section 7 briefly comments on the locality of the integrals of motion and on the
Hamiltonian structures of the NLEEs.

2. Preliminaries

We assume that the reader is familiar with the basic facts from the theory of simple
Lie algebras [25]. In what follows by h is denoted a fixed Cartan subalgebra of g,
∆ is the root system of g, α ∈ ∆ are the roots, A ≡ {α1, . . . , αr} is the set of
the simple roots – naturally, the rank of g is r. Suppose that Eα, α ∈ ∆ and Hk,
k = 1, . . . , r denotes the standard Cartan-Weyl basis in g, see e.g. [25]. Then as
well known the commutation relations of the Cartan-Weyl basis have the form

[H,Eα] = α(H)Eα, [Eα, E−α] = Hα

[Eα, Eβ] = Nα,βEα+β , Nα,β =

{

6= 0 if α+ β ∈ ∆
0 if α+ β 6∈ ∆.

(3)

Let us outline some important facts about the graded Lie algebras and more specif-
ically – how one can introduce bases in g

(k), see below.
In this article we shall consider grading defined by the Coxeter automorphism, that
is C ∈ Aut g, Ch = 11 and h is the Coxeter number. Obviously the eigenvalues of
C are ωk, k = 0, 1, . . . , h − 1, where ω = exp(2πi/h). To each eigenvalue there
corresponds a linear subspace g

(k) ⊂ g determined by

g
(k) ≡

{

X ; X ∈ g, C(X) = ωkX
}

.

We than have g =
h−1
⊕
k=0

g
(k) and

[

g
(k), g(n)

]

⊂ g
(k+n), where k+n is taken modulo

h. This of course turns g into a graded algebra.

Remark 1. In fact, as we shall see below, one can view the potentials of the Lax
operators as elements of Kac-Moody type ̂gC whose elements are

X(λ) =
∑

k

Xkλ
k, Xk ∈ g

(k)
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where the sum runs contains only a finite number of terms. For reasons that will
become clear later we shall assume that the element U1 from (1) belongs to g

(1).

Remark 2. Note also that the Killing form between any two elements X(k) ∈ g̃
(k)

and Y(k) ∈ g̃
(m) may be non-vanishing only if k +m = 0 mod (h).

2.1. The Coxeter Automorphism as Cartan Subgroup Element

We shall consider two realizations of the Coxeter automorphism and start with a
realization of as element from the Cartan subgroup

C = exp

(

2πi

h
Hρ̂

)

, (ρ̂, αj) = 1 (4)

where

ρ̂ =
r
∑

j=1

(αj , αj)

2
ωj (5)

and ωj are the fundamental weights of g. For the classical Lie algebras the vectors
ρ̂take the form

Ar : ρ̂ =

r
∑

s=0

([r

2

]

− s
)

es+1, Br : ρ̂ =

r−1
∑

s=0

(r − s)es+1

Cr : ρ̂ =
r−1
∑

s=0

(

r − s−
1

2

)

es+1, Dr : ρ̂ =
r−1
∑

s=0

(r − s− 1)es+1

(6)

where ek are as usual orthonormal vectors. Obviously (ρ̂, αj) = 1 for j = 1, . . . , r.
With the above choices we have

g
(0) ≡ h, g

(k) ≡ span {Eα ; htα = k mod (h)} (7)

where htα is the height of the root α. In other words, if α =
∑r

k=1mkαk, then
htα =

∑r
k=1mk.

In this case the matrix U1 that appears in the Lax operator will be denoted by J
and is given by

J =
r
∑

s=0

Eαs (8)

where αk, k = 1, . . . , r are the simple roots of g and α0 is the minimal root. We
will use it applying additional normalization

〈J, JT 〉 = 1, JT =
r
∑

s=0

E−αs (9)
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where 〈X,Y 〉 denotes the Killing form applied to X and Y . The characteristic
equations for J are as follows

Ar zh − 1 = 0, Br (zh − 1)z = 0

Cr zh − 1 = 0, Dr (zh − 1)z2 = 0
(10)

where h is the Coxeter number of the algebra, see Table 1. In what follows we will
need not only the basis in each of g(k), but also the orthogonal splitting

Xk ∈ g
(k), Xk = X⊥

k +X
‖

k
(11)

where

[X
‖

k , J ] = 0, 〈X⊥

k , X
‖

k〉 = 0. (12)

Table 1. The Coxeter numbers, the exponents and the minimal roots
of the classical series of Lie algebras, see [25].

Algebra Coxeter number exponents minimal root
Ar ' sl(r + 1) r + 1 1, 2, 3, . . . , r er+1 − e1
Br ' so(2r + 1) 2r 1, 3, 5, . . . , 2r − 1 −e1 − e2
Cr ' sp(2r) 2r 1, 3, 5, . . . , 2r − 1 −2e1
Dr ' so(2r) 2r − 2 1, 3, 5, . . . , 2r − 3, r − 1 −e1 − e2
G2 6 1, 5
F4 12 1, 5, 7, 11

We will also need ad −1
J . Since J is not diagonal this will present technical diffi-

culty which can be overcome by using the characteristic equation for ad J , see [21].
As for the splitting (11), for the classical seriesAr,Br andCr it can be found using
the fact that any matrix from the algebra commuting with J (9) is a polynomial of
J of maximal order h. In particular, the powers of J commute with J . For Ar it is
enough to use Jk, k = 1, . . . , r. Then for g ' sl(r + 1) we have

Xk = X⊥

k +X
‖

k , X
‖

k = c−1
k Jk〈X, Jh−k〉, h = r + 1 (13)

where ck = 〈Jk, Jh−k〉. For the classical series Br and Cr we have

X
‖

k = 0, if k = 2s is not an exponent

X
‖

k = c−1
k Jk〈Xk, J

h−k〉, if k = 2s− 1 is an exponent.
(14)

The case of the series Dr will be treated separately elsewhere, because for it there
are some specifics due to the fact that r − 1 is an exponent, see Table 1. For the
algebraDr, in case r = 2p+1 the even number 2p is as exponent while in the case
r = 2p the odd number 2p− 1 is a double valued exponent.
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2.2. The Coxeter Automorphism as Weyl Group Element

Now we shall consider another realization of the Coxter automorphism. Techni-
cally it is easier to handle the case g ' sl(r + 1), so we shall start with it.
The Coxeter automorphism C̃ can be realized as

C̃(X) = KXK−1, K =
h
∑

s=1

Es+1,s, (Ek,m)jp = δkjδmp. (15)

Here and below all indexes are understood modulo h, so that the last term with
s = h in (15) equals Eh,1. The calculations are much simpler if we introduce a
convenient basis in g

(k), namely

J (k)
s =

h
∑

j=1

ωkjEj,j+s, KJ (k)
s K−1 = ωkJ (k)

s . (16)

Obviously, J (k)
s satisfies the commutation relations

[

J (k)
s , J

(m)
l

]

=
(

ωms − ωkl
)

J
(k+m)
s+l . (17)

Another option is to use the dihedral realization of the Coxeter automorphism C̃

C̃ = C1C2 (18)

where

C1 =
∏

α∈A1

Sα, C2 =
∏

β∈A2

Sβ . (19)

In the above A0 and A1 are subsets of the set of simple roots A = {α1, . . . αr} of
g such that

A1 ∪A2 = A, (αj , αk) = 0, (βj , βk) = 0, for j 6= k (20)

for all αj , αk ∈ A0 and βj , βk ∈ A1. Also, by Sα is denoted the Weyl reflection

related to the root α, i.e., Sα~x = ~x −
2(~x, α)

(α, α)
α, where ( , ) is the canonical inner

product in the Euclidean space E
r. For the classical series Ar, Br and Cr of Lie

algebras

A1 = {α2, α4, . . . , α2p}, A2 = {α1, α3, . . . , α2p−1}, if r = 2p

A1 = {α2, α4, . . . , α2p}, A2 = {α1, α3, . . . , α2p+1}, if r = 2p+ 1
(21)

and for the Dr series

A1 = {α2, α4, . . . , α2p−2}, A2 = {α1, α3, . . . , α2p−1, α2p, }, if r = 2p

A1 = {α2, α4, . . . , α2p, α2p+1}, A2 = {α1, α3, . . . , α2p−1}, if r = 2p+ 1.
(22)
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In the above we have used the standard notations for the sets of simple roots
{α1, . . . , αr}, see [25].

It is natural to call the set of roots Oα ≡ {α, C̃α, . . . , C̃h−1α} the orbit of C̃
passing through the root α. The special choice for C̃ (18) has the advantage to
split the root system ∆ into r orbits as follows

∆ = ∪
α∈A1

Oα ∪ ∪
β∈A2

O−β = ∪
α∈A1

O−α ∪ ∪
β∈A2

Oβ. (23)

This allows us to introduce two bases in g compatible with the grading

g̃
(k) ≡ span {E (k)

α , E
(k)
−β , H

(k)
j ; α ∈ A0, β ∈ A1}

g̃
(k) ≡ span {E (k)

−α, E
(k)
β , H

(k)
j ; α ∈ A0, β ∈ A1} (24)

E(k)
α =

1

h

h−1
∑

s=0

ω−skC̃s(Eα), H
(k)
j =

1

h

h−1
∑

s=0

ω−skC̃s(Hj).

Remark 3. Note that H(k)
j is non-vanishing only if k is an exponent of g. That also

means that each g̃
(k) has at most one-dimensional intersection with the Cartan

subalgebra and the only exceptions take place for the algebras of the series D2r

which have 2r − 1 as double valued exponent. These cases will be considered
elsewhere.

We can pick U1 to be equal to J where

J =He1+

p−1
∑

s=1

(

ωsHe2s+ω
−sHe2s+1

)

, for A2p, B2p+1, C2p+1, D2p

J =He1+

p−1
∑

s=1

(

ωsHe2s+ω
−sHe2s+1

)

+ ωpHe2p , for A2p−1, B2p, C2p, D2p+1.

(25)

Choosing J as in (25) we have

C̃(J ) = ωJ , C1(J ) = J ∗, C2(J ) = ωJ ∗ (26)

where ω = exp(2πi/h). In addition

C1(E
(0)
α ) = E

(0)
−α, C2(E

(0)
β ) = E

(0)
−β

C2(E
(0)
α ) = C1(E

(0)
α ), C1(E

(0)
−β) = C2(E

(0)
−β)

(E(s)
α )† = E

(s)
−α, Ci(E

(s)
α ) = E

(h−s)
wi(α)

, i = 1, 2.

(27)
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Below we will need the commutation relations between J and the E
(s)
β . They can

be derived as follows

[J , E(p)
α ] =

1

h

h−1
∑

s=0

ω−sp[J , C̃s(Eα)] =
1

h

h−1
∑

s=0

ω−spC̃s
(

[C̃−s(J ), Eα]
)

=
1

h

h−1
∑

s=0

ω−sp−sC̃s ([J , Eα]) =
1

h

h−1
∑

s=0

ω−sp−sα(J )C̃s (Eα)

= α(J )E
(p+1)
β

(28)

and similarly

[J , E
(p)
−β ] = −β(J )E

(p+1)
β . (29)

The rest of the commutation relations between the basic elements in g̃
(k) may be

a bit complicated to derive though of course one can do it using the equations (3)
and (24) and take into account the fundamental property of the coefficients Nα,β ,
namely Nα,β = N

C̃(α),C̃(β). However, one can approach the problem differently if

we notice that C̃ has the same set of eigenvalues as C, which as we mentioned are
equal to the powers of ω = exp(2πi/h). Hence C̃ and C are related by a similarity
transformation

C̃ = u−1
0 Cu0 (30)

where u0 is some constant element of the corresponding Lie group. Therefore the
basis in g̃

(k) (24) can be obtained from the basis in g
(k) (7) via this transformation.

2.3. Mikhailov’s Reduction Group

Mikhailov’s reduction group is a finite group, which must have two realizations:
i) as a subgroup of the group of automorphisms Aut g of the algebra g and ii) as
a subgroup of the conformal transformations Conf of the complex λ-plane. In
what follows we shall use the Coxeter automorphism Ch = 11 and the involutions
C2
1 = 11, or C2

2 = 11 for realizations of the groups Z2, Zh, Dh acting on g. Note
that for a given realization in g one may have inequivalent realizations in Conf, that
is why we use the indexes 1, 2 to distinguish different cases. More specifically, the
automorphisms C, C1 and C2 listed below lead to the following reductions for the
matrix-valued functions

1) C(U(λ)) = U(ωλ), C(V (λ)) = V (ωλ)

2) C1(Ũ
†(λ∗)) = Ũ(λ), C1(Ṽ

†(λ∗)) = Ṽ (λ)

3) C2(Ũ
†((λω)∗)) = Ũ(λ). C2(Ṽ

†((λω)∗)) = Ṽ (λ).

(31)

The above restrictions naturally extend to restrictions on the FAS, the scattering
matrix T (λ, t), the spectral data of the Lax operator etc., see below.
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3. Lax Pairs and NLEEs

Now we are in position to outline the Lax pairs with Zh- and Dh- reductions and
the relevant NLEEs that result in. First we shall use the realization of the Coxeter
automorphism as an element of the Cartan subgroup. We have

Lχ ≡ i
∂χ

∂x
+ (q(x, t)− λJ)χ(x, t, λ) = 0

q(x) =
r
∑

j=1

qj(x, t)Hj ∈ h, J =
∑

ht α=1

Eα.
(32)

Note that the root height should be understood modulo h, so in J along with the
generators corresponding to the simple roots we have to add also the generator
corresponding to the minimal root whose height is −h+ 1 = 1 mod (h).
The best known NLEE’s of the above type are the well known two-dimensional
Toda field theories, discovered by Mikhailov [32]. They attracted a lot of at-
tention, see [9, 30, 32, 34, 35] and the numerous references therein. Their Lax
representation [L,MTft] = 0 involves an L-operator as in equation (32) with
q(x, t) = 2iφx(x, t) ∈ h and M -operator of the form

MTftχ ≡ i
∂χ

∂x
+

i

λ
V−1(x, t)χ(x, t, λ) = 0

V−1(x, t) =
r
∑

k=0

e2(
~φ,αk)E−αk

∈ g
(h−1)

(33)

where ~φ(x, t) is the vector in the Euclidean space, that corresponds to the Cartan
element φ(x, t) in h. The corresponding equations take the form

∂2~φ

∂x∂t
=

r
∑

k=0

αke
2(~φ,αk). (34)

These equations have been studied in detail, so we will turn our attention to the
other members in their hierarchies. For that reason below we will consider M -
operators that are polynomial in λ of order N . The compatibility of the Lax pair
requires in particular [J ,KN ] = 0, which is possible only if N = mk + ph where
mk is an exponent of the algebra g, see Table 1, and p is any integer. Therefore

M(k)χ ≡ i
∂χ

∂t
+

(

N
∑

s=1

λN−sVs(x, t)− λNKN

)

χ(x, t, λ) = 0

Vs(x) =
∑

ht β=N−s

vs;β(x, t)Eβ ∈ g
(N−s), s > 1, KN ∈ g

(N).

(35)

Remark 4. As one can see, even for algebras of low rank and for small values of
p the order N of the NLEE grows rather quickly, see Table 2.
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Table 2. The orders of the NLEE’s withN = ph+mk for the classical
Lie algebras of rank up to 4 and p = 1 and p = 2.

N A2 B2, C2 G2

h+mk 4, 5 5, 7 7, 11
2h+mk 7, 8 9, 11 13, 17

A3 B3, C3

h+mk 5, 6, 7 7, 9, 11
2h+mk 9, 10, 11 13, 15, 17

A4 B4, C4 D4 F4

h+mk 6, 7, 8, 9 9, 11, 13, 15 7, 9, 9, 11 13, 17, 19, 23
2h+mk 11, 12, 13, 14 17, 19, 21, 23 13, 15, 15, 17 25, 29, 31, 35

Now let us consider the Lax operators

L̃χ̃ ≡ i
∂χ̃

∂x
+ Ũ(x, t, λ)χ̃(x, t, λ) = 0

M̃χ̃ ≡ i
∂χ̃

∂t
+ Ṽ (x, t, λ)χ̃(x, t, λ) = 0

(36)

where

Ũ(x, t, λ) = Q(x, t)− λJ

Q(x) =

r
∑

j=1

qj(x, t)u
−1
0 Hj u0 =

∑

α∈A1

qαE
(0)
α +

∑

β∈A2

qβE
(0)
−β

(37)

and C1(Q
†(x, t)) = Q(x, t), i.e.,

q∗α(x, t) = qα(x, t), q∗β(x, t) = qβ(x, t). (38)

The potential of the operator M̃ takes the form

Ṽ (x, t, λ) =
N
∑

s=1

λN−sṼs(x, t, λ)− λNKN

Ṽs(x, t) =
∑

α∈A1

vs,α(x, t)E
(N−s)
α +

∑

β∈A2

vs,β(x, t)E
(N−s)
−β + Ṽ ‖

s (x, t)

VN (x) =
r
∑

j=1

vN,j(x, t)Hj ∈ h

J = u−1
0 Ju0 ∈ h, KN = u−1

0 KNu0 ∈ h, s = 1, . . . , N − 1.

(39)
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The above form of the L̃-M̃ pair is obtained from L (32) and M (35) by taking a
similarity transformation with u0, see equation (30), that diagonalizes simultane-
ously J and KN . In equation (39) Ṽs(x, t)‖ ∈ h and is non-vanishing only if s is
an exponent (of course mod (h)) of the corresponding algebra.
Now we can formulate a Dh-reduction group. It is generated by the the involutions:

C1(Ũ
†(x, t, λ∗)) = Ũ(x, t, λ), C2(Ũ

†(x, t, (λω)∗)) = Ũ(x, t, λ)

C1(Ṽ
†(x, t, λ∗)) = Ṽ (x, t, λ), C2(Ṽ

†(x, t, (λω)∗)) = Ṽ (x, t, λ).
(40)

Imposing both reductions (40) we obtain that L̃ is a subject also of the Zh-reduction

C̃(Ũ(x, t, λ)) = Ũ(x, t, ωλ), C̃(Ṽ (x, t, λ)) = Ṽ (x, t, ωλ). (41)

Thus this realization of the reductions effectively gives rise to the additional con-
ditions on qα and qβ (38) so our reduction group is Dh. In order to check that Vs
also satisfy the reduction conditions one needs to use equation (38) above.

3.1. The Spectral Properties of the Lax Operator

In our paper [22] we extended the construction of Caudrey-Beals-Coifman to any
simple Lie algebra and constructed the FAS of generalized Zakharov-Shabat sys-
tems whose U1 has complex eigenvalues. Imposing the Zh-reduction we obtain
the Lax operator (36). Particular cases of such operators have been considered in
[23, 38].
The Jost solutions ψ̃(x, t, λ) and φ̃(x, t, λ) and the scattering matrix T (λ, t) of
L̃ (36) exist for large class of potentials, in particular for potentials on compact
support and are determined uniquely by the following conditions

lim
x→∞

ψ̃(x, t, λ)eiλJ x = 11, lim
x→−∞

φ̃(x, t, λ)eiλJ x = 11

T (λ, t) = ψ̃−1(x, t, λ)φ̃(x, t, λ).
(42)

When the potential is on compact support both Jost solutions, as well as the scat-
tering matrix are rational functions of λ.

It can be shown that the continuous spectrum of L̃ lies on those lines in C on
which one or more of the entries of e−iλJ x oscillate. In other words the continuous
spectrum of L̃ is determined by the condition λ belongs to the continuous spectrum
Scont if and only if Imλα(J ) = 0 for some root α of the algebra g. Using the
explicit form of J from equation (25) one derives that the continuous spectrum of
L fills up the set of rays

Scont ≡
2h
∪

ν=1
lν , lν ≡ {λ ; arg λ = −

π

2
+ (ν − 1)

π

h
, ν = 1, . . . , 2h}. (43)
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These rays split C into 2h sectors Ων situated between the rays lν and lν+1. In
addition, for each fixed value of ν one finds that the set of roots

∆ν ≡ {α ; Imλα(J ) = 0 for λ ∈ lν} (44)

forms a root system for a subalgebra gν ⊂ g.
With the above choice of J one can check that the subalgebras g1 and g2 associated
with the rays l1 and l2 respectively, have as root systems ∆1 and ∆2 where

∆1 ≡ {±α ; α ∈ A1}, ∆2 ≡ {±β ; β ∈ A2}. (45)

Since any pair of roots αi, αj ∈ A0 and βi, βj ∈ A1 are orthogonal, then each of
the subalgebras g1 and g2 are direct sums of sl(2) subalgebras. The Zh reduction
condition allows one to check that the subalgebras related to the other rays are
obtained from g1 and g2 by acting with the Coxeter automorphism

∆2ν+1 ≡ {±C̃ν−1α ; α ∈ A1}, ∆2ν ≡ {±C̃ν−1β ; β ∈ A2}. (46)

Remark 5. The scattering matrix T (λ, t) of the scattering problem L for λ ∈ lν
takes values in the subgroup Gν whose Lie algebra is the subalgebra gν .

The next step is to construct FAS χν(x, t, λ) which retain their analyticity proper-
ties inside the sector Ων , closed between the rays lν and lν+1, in the case when the
potential is not on compact support. Skipping the details (see [22]) we note that
these FAS are related to the Jost solutions by

χ̃ν(x, t, λ) = φ̃(x, t, λ)S+
ν (λ, t)

= ψ̃(x, t, λ)T−

ν (λ, t)D+
ν (λ), λ ∈ lνe

+i0

χ̃ν(x, t, λ) = φ̃(x, t, λ)S−

ν+1(λ, t)

= ψ̃(x, t, λ)T+
ν+1(λ, t)D

−

ν+1(λ), λ ∈ lν+1e
−i0

(47)

where the factors S±
ν (λ, t), T

±
ν (λ, t) andD±

ν (λ) are related to T (λ, t) by its Gauss
decomposition

T (λ, t) = T+
ν (λ, t)D+

ν (λ)Ŝ
+
ν (λ, t) = T+

ν (λ, t)D−

ν (λ)Ŝ
−

ν (λ, t), λ ∈ lν . (48)

More specifically, using for each of the sl(2)-subalgebras the Cartan-Weyl basis
Eα, E−α, Hα or Eβ , E−β, Hβ respectively we have

S±

ν (λ, t) = exp s±ν (λ, t), T±

ν (λ, t) = exp τ±

ν (λ, t), D±

ν (λ, t) = expd±

ν (λ)
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where

s±2ν−1(λ, t) =
∑

α∈∆+

2ν−1

σ±2ν−1;α(λ, t)E±α, s±2ν(λ, t) =
∑

β∈∆+

2ν

σ±2ν;β(λ, t)E±β

τ±

2ν−1(λ, t) =
∑

α∈∆+

2ν−1

τ±2ν−1;α(λ, t)E±α, τ±

2ν(λ, t) =
∑

β∈∆+

2ν

τ±2ν;β(λ, t)E±β

d+
2ν−1(λ) =

∑

α∈∆+

2ν−1

d±2ν−1;αHα, d+
2ν(λ) =

∑

β∈∆+

2ν

d±2ν;βHβ .

(49)

While the triangular Gauss factors S±
ν (λ, t) and T±

ν (λ, t) exist only for λ ∈ lν , the
diagonal Gauss factors D+

ν (λ) and D−

ν+1(λ) allow analytic extension inside the
whole sector Ων .
As mentioned above, the reduction conditions (31) on the Lax pair impose con-
straints on the scattering data as follows
i) the Zh reduction

S±

2ν+1(λ, t) = Cν−1S±

1 (ω
ν−1λ, t), T±

2ν+1(λ, t) = Cν−1T±

1 (ων−1λ, t)

S±

2ν(λ, t) = Cν−1S±

2 (ω
ν−1λ, t), T±

2ν(λ, t) = Cν−1T±

2 (ων−1λ, t)

D±

2ν+1(λ) = Cν−1D±

1 (ω
ν−1λ), D±

2ν(λ) = Cν−1D±

2 (ω
ν−1λ).

(50)

ii) the first Z2-reduction acts on the complex λ-plane by λ → λ∗. This means that
it acts on the sectors as Ων → Ωh−ν+1 and on the rays as lν → lh+2−ν . On the
Gauss factors of T (λ, t) it acts in the following way

C1(S
+,†
ν (λ, t)) = Ŝ−

h−ν+2(λ
∗, t), C1(D

+,†
ν (λ)) = D̂−

h−ν+2(λ
∗)

C1(T
−,†
ν (λ, t)) = T̂+

h−ν+2(λ
∗, t).

(51)

Consequently the coefficients τ±2ν−1,α(λ, t), τ
±

2ν,β(λ, t), σ
±

2ν−1,α(λ, t) and σ±2ν,β(λ, t)
are related as follows

σ−2ν−1,α(λ, t) = −σ+,∗

h−2ν+1,C1(α)
(λ∗, t), λ ∈ l2ν−1, α ∈ ∆+

2ν−1

τ+2ν,β(λ, t) = −τ−,∗

h−2ν+2,C1(β)
(λ∗, t), λ ∈ l2ν , β ∈ ∆+

2ν .
(52)

iii) the second Z2-reduction acts on λ as λ → λ∗ω−1. This means that it acts on
the sectors Ων → Ωh−ν−1 and on the rays as lν → lh−ν . The action on the Gauss
factors is then given by

C2(S
+,†
ν (λ, t)) = Ŝ−

h−ν(ω
−1λ∗, t), C2(D

+,†
ν (λ)) = D̂−

h−ν(ω
−1λ∗)

C2(T
−,†
ν (λ, t)) = T̂+

h−ν(ω
−1λ∗, t)

(53)
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and the coefficients τ±2ν−1,α(λ, t), τ
±

2ν,β(λ, t), σ
±

2ν−1,α(λ, t) and σ±2ν,β(λ, t) are re-
lated by

σ−2ν−1,α(λ, t) = −σ+,∗

h−2ν−3,C2(α)
(ω−1λ∗, t), λ ∈ l2ν−1, α ∈ ∆+

2ν−1

τ+2ν,β(λ, t) = −τ−,∗

h−2ν−1,C2(β)
(ω−1λ∗, t), λ ∈ l2ν , β ∈ ∆+

2ν .
(54)

3.2. The Time Evolution of the Scattering Data

The Lax representation with L and M as in (32), (35) allows one to solve a system
of NLEEs for qj(x, t). We will give examples of such systems in the next sections.
Here we just note that the Lax representation determines the t-dependence of the
scattering matrix (and its Gauss factors) as follows

i
∂Tν
∂t

− λN [KN , Tν(λ, t)] = 0, i
∂S±

ν

∂t
− λN [KN , S

±

ν (λ, t)] = 0

i
∂T±

ν

∂t
− λN [KN , T

±

ν (λ, t)] = 0, i
∂D±

ν

∂t
= 0.

(55)

Since these equations can be immediately solved, thus one finds the evolution in
time. In particular, the last equations in (55) show that the functions D±

ν (λ) are
time-independent, i.e., they can be viewed as generating functionals of the integrals
of motion of the corresponding NLEEs.

4. The Inverse Scattering Problem and the Riemann-Hilbert Problem

Of course, finding the time evolution of the Gauss factors is only a step towards
finding the solutions for the corresponding NLEE. One should be able to construct
from the Gauss factors the solutions, a process called Inverse Scattering Transform
(IST). We shall outline here how one can do it reducing the IST for the GZS system
to a local Riemann-Hilbert problem (RHP). Indeed, on the ray lν we have

ξν(x, t, λ) = ξν−1(x, t, λ)Gν(x, t, λ), λ ∈ lν

Gν(x, t, λ) = e−i(λJ x+λNKN t)G0,ν(λ)e
i(λJ x+λNKN t)

(56)

where G0,ν(λ) = Ŝ−
ν S

+
ν (λ, t)

∣

∣

∣

t=0
and ξν , ξν−1 are functions analytic in the sec-

tors Ων ,Ων−1. The collection of all relations (56) for ν = 1, 2, . . . , 2N together
with the condition

lim
λ→∞

ξν(x, t, λ) = 11 (57)

can be viewed as a local RHP with canonical normalization posed on the collection
of rays Σ ≡ {lν}

2N
ν=1. The canonical normalization implies that each solution of

the RHP possesses asymptotic expansion of the form

ξν(x, t, λ) = exp

(

∞
∑

s=1

λ−sQs(x, t)

)

(58)
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where Qs(x, t) are elements of the Lie algebra g. The Zh-reduction means that
Qs(x, t) ∈ g

(k). Quite straightforwardly one can prove that if ξν(x, λ) is a solution
of the RHP (56), (57) then χν(x, λ) = ξν(x, λ)e

−iλJ x is a FAS of L̃ with potential

Q(x, t) = lim
λ→∞

λ
(

J − ξν(x, t, λ)J ξ̂ν(x, t, λ)
)

= [J , Q1(x, t)]. (59)

In what follows we will consider two classes of solutions to the RHP: i) the class
of regular solutions which have no singularities in their sectors of analyticity, ii)
the class of singular solutions, which allow both poles and zeros1 in their regions
of analyticity.
Each regular solution of the RHP (56), (57) is determined uniquely by the sewing
functions Gν(x, t, λ), which due to (50) also satisfy the Zh reduction condition.
Therefore it is enough to know the sewing functions on the rays l1 and l2 in order
to calculate the whole set of sewing functions Gν(x, t, λ). Thus the minimal set of
scattering data that determines the regular solution ξν(x, t, λ) are given by

T ≡ {σ±1;α(λ, t) ; α ∈ A1, λ ∈ l1} ∪ {σ±2;β(λ, t) ; β ∈ A2, λ ∈ l2}. (60)

In other words the set T contains r functions of λ and t, each defined on a certain
ray and from T one must recover r scalar functions defined on the real axis – the
potential Q(x, t), see equation (38). The singular solutions to the RHP and the
related soliton solutions of the corresponding NLEE can be derived using the the
dressing Zakharov-Shabat method [32,45]. Starting from the trivial solution of the
RHP we obtain explicit rational solutions of the RHP.

5. The Recursion Operators and the NLEEs

One of the important steps in the theory is the explicit derivation of the relevant
NLEEs. Below we assume that N mod (h) is an exponent of g. We will follow
[1] and construct recurrent relations for calculating the coefficients Ṽs(x, t) in the
M̃ -operator (35) in terms of Q(x, t) and its derivatives. Doing this it is natural to
use the condition that L̃ and M̃ commute identically with respect to λ. Equating to
zero all the coefficients of the positive powers in λ in [L̃, M̃ ] we obtain a set of re-
current relations for the functions Ṽs(x, t). Note, that due to the Zh reduction, the
potentials of both L̃ and M̃ take values in the graded algebra, which requires gen-
eralization of the AKNS method and a substantially new structure of the recursion

1by a zero of ξν(x, t, λ) at λν,k ∈ Ων here we mean that det ξν(x, t, λν,k) = 0.
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operators. Thus we have

λN+1 : [J ,KN ] = 0

λN : [J , Ṽ1(x, t)] + [Q(x, t),KN ] = 0

λN−s : i
∂Ṽs
∂x

+ [Q(x, t), Ṽs(x, t)]− [J , Ṽs+1(x, t)] = 0

λ0 : −i
∂Q

∂t
+ i

∂ṼN
∂x

+ [Q(x, t), ṼN (x, t)] = 0.

(61)

The first of the above equations is satisfied identically. The second can be resolved
as

Ṽ1(x, t) = ad −1
J

[KN , Q(x, t) (62)

where ad J X̃ ≡ [J , X]. The operator ad J obviously has a kernel, and its inverse
ad −1

J
is defined only on its image. Thus there naturally appear the necessity to split

each of the coefficients Ṽs(x, t) into ‘orthogonal’ and ‘parallel’ parts

Ṽs(x, t) = Ṽ ⊥

s (x, t)+Ṽ ‖

s (x, t), [Ṽ ‖

s (x, t),J ] = 0, 〈Ṽ ⊥

s (x, t),H〉 = 0. (63)

where H is any element of the Cartan subalgebra. Since Ṽs(x, t) ∈ g
(N−s) in fact

we need to split each of the subspaces g(N−s) into

g
(N−s) = g

(N−s)⊥ ⊕ g
(N−s)‖

Vs = V ⊥

s + V ‖

s , V ‖

s =

{

0 if s is not an exponent
c−1
s J s〈Vs,J

h−N+s〉 if s is an exponent
(64)

where cs = 〈J h−N+ss,JN−s〉.
The above formulae hold true for the classical series of algebras Ar, Br and Cr

while the Dr series requires more care and will be discussed elsewhere.

Note that we can always fix up the gauge so that Q(x, t) ≡ Q⊥(x, t). Then we
have

Ṽ1(x, t) =
∑

α∈A1

α(KN )

α(J )
qα(x, t)E

(N−1)
α +

∑

β∈A2

α(KN )

β(J )
qβ(x, t)E

(N−1)
−β . (65)

In doing this we used the commutation relations (28).
Equation (65) provides the initial condition for the recurrent relations. They are
determined from the third line of (61) where we must insert the splitting of Vs(x, t)
and Vs+1(x, t) according to (64).
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5.1. The Case of Ar

Let us consider first the Ar series, for which all numbers 1, 2, . . . , r are exponents.
Then we obtain the following two equations

Ṽ ⊥

s+1(x, t) = ad −1
J

(

i
∂Ṽ ⊥

s

∂x
+ [Q(x, t), Ṽ ⊥

s ] + [Q(x, t), Ṽ ‖

s ]

)

i

〈

∂Ṽ
‖

s

∂x
,J s

〉

= 〈[Q(x, t), Ṽ ⊥

s ]J s〉.

(66)

Integrating formally the second one we obtain

Ṽ ‖

s (x, t) = i(∂x)
−1
±

(

[Q(x, t), Ṽ ⊥

s ]
)‖

= ic−1
s JN−s∂−1

x 〈[Q(x, t), Ṽ ⊥

s ],J h−N+s〉+ ṽs0

(67)

where (∂x)
−1
± · =

∫ x

±∞

dy · and ṽs0 = const . Then we can write down the formal

solution of the recurrent relations in the form

Ṽ ⊥

s+1(x, t) = Λ±

N−sṼ
⊥

s (x, t) + ṽs0[Q(x, t),J N−s]

Λ±

N−sX
⊥

s = ad −1
J

(

i
∂X̃⊥

s

∂x
+ [Q(x, t), X̃⊥

s ]

+ ic−1
s [Q(x, t),J N−s](∂x)

−1
± 〈[Q(y, t), X⊥

s (y)]J h−N+s〉

)

.

(68)

Further, taking for simplicity ṽs0 = 0 the solution to these recursion relation is

Ṽs(x, t) = Λ±

N−s+1Λ
±

N−s+2 · · ·Λ
±

N−1ad −1
J

[KN , Q(x, t)] (69)

for s = 2, . . . , N . The corresponding NLEEs can be written in compact form as

i ad −1
J

∂Q

∂t
− fNΛ0Λ

±

1 Λ
±

2 · · ·Λ±

N−1ad −1
J

[KN , Q(x, t)] = 0 (70)

where

Λ0X̃
⊥

2p+1 = ad −1
J

(

i
∂X̃⊥

2p+1

∂x
+ [Q(x, t), X̃⊥

2p+1]

)

. (71)

The dispersion law of the NLEE (70) is fNλN . In the simplest cases N = 2 and
N = 3 we get

ṼN (x, t) = Λ±

1 ad −1
J

[K2, Q(x, t)], ṼN (x, t) = Λ±

1 Λ
±

2 ad −1
J

[K3, Q(x, t)]

K2 = f2J
2, K3 = f3J

3.
(72)



136 Vladimir S. Gerdjikov and Alexandar B. Yanovski

The recursion operators Λ±

N−s can be obtained as the restriction of the operators
Λ± which are the recursion operators for potential without any restrictions

Λ±X̃⊥ = ad −1
J

(

i
∂X̃⊥

∂x
+ [Q(x, t), X̃⊥

s ]

+ i
r
∑

s=1

c−1
N−s[Q(x, t),J s](∂x)

−1
± 〈[Q(y, t), X̃⊥

s (y)],J h−s〉

) (73)

by restricting them onto the subspaces g(N−s). Indeed, as readily seen, Λ± maps
g
(s) into g

(s−1). However, practically it is much better to have expressions where
the grading can be observed explicitly.
We end this subsection by giving an example of integrable NLEE known as the
Zh-reduced derivative NLS equation. The Lax operator L̃ is parametrized by

Q(x, t) =
N−1
∑

j=1

ψj(x, t)J
(0)
j , J = −aω−1/2J

(1)
0 . (74)

The M̃ -operator is quadratic in λ with

V1(x, t) =
N
∑

k=1

v1,k(x, t)J
(1)
j , v1,p = −

b

a
ω(p+1)/2 cos

(pπ

N

)

ψp(x, t)

V0(x, t) =
N−1
∑

k=1

v0,k(x, t)J
(0)
j , V2 = −bJ

(2)
0

(75)

where

v0,p = γ



i cotan
pπ

N
ψp,x −

N
∑

k+s=p

ψkψs(x, t)



 , γ =
bω

a2
· (76)

The λ-independent term in the Lax representation vanishes whenever the functions
ψk satisfy the Zh-reduced derivative NLS equation [13, 17]

∂qk
∂t

+γ cotan
(

πk

N

)

∂2qk
∂x2

−γ

N−1
∑

p=1

∂

∂x
(qpqk−p) = 0, k = 1, 2, . . . , r. (77)

Its dispersion law is γλ2.

5.2. The Case of Br and Cr

Consider now the series Br and Cr. For them all the odd numbers 1, 3, . . . , 2r− 1
are exponents. Note also that now N must be odd: N = 2k + 1. Again we obtain
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two equations for each s

Ṽ ⊥

s+1(x, t) = ad −1
J

(

i
∂Ṽ ⊥

s

∂x
+ [Q(x, t), Ṽ ⊥

s ] + [Q(x, t), Ṽ ‖

s ]

)

i

〈

∂Ṽ
‖

s

∂x
,J s

〉

= 〈[Q(x, t), Ṽ ⊥

s ]J s〉

(78)

but this time they have to be considered separately for even s = 2p and odd s =

2p + 1 values of s. Indeed, Ṽ2p ∈ g
(2k−2p+1) and therefore Ṽ ‖

2p are nontrivial,

while Ṽ2p+1 ∈ g
(2k−2p) and therefore Ṽ ‖

2p+1 = 0. Applying similar technique as
above we obtain

Ṽ ⊥

2p+2(x, t) = Λ0Ṽ
⊥

2p+1(x, t)

Ṽ ⊥

2p+1(x, t) = Λ±

N−2pṼ
⊥

2p(x, t) + ṽ2p,0[Q(x, t), J̃N−2p]
(79)

where

Λ0X̃
⊥

2p+1 = ad −1
J

(

i
∂X̃⊥

2p+1

∂x
+ [Q(x, t), X̃⊥

2p+1]

)

(80)

Λ±

N−2pX̃
⊥

2p = ad −1
J

(

i
∂X̃⊥

2p

∂x
+ [Q(x, t), X̃⊥

2p]

(81)

+
1i

c2s
[Q(x, t),J N−2p](∂x)

−1
± 〈[Q(y, t), X̃⊥

2p(y)],J
h−N+2p〉

)

.

The formal solutions for Ṽs(x, t) in terms of the recursion operators, using again
for simplicity ṽs0 = 0 is

Ṽ2p(x, t) = Λ0Λ
±

N−2p+2Λ0Λ
±

N−2p+4 · · ·Λ0Λ
±

N−2Λ0ad −1
J

[KN , Q(x, t)]

Ṽ2p+1(x, t) = Λ±

N−2pΛ0Λ
±

N−2p+2Λ0 · · ·Λ
±

N−2Λ0ad −1
J

[KN , Q(x, t)]
(82)

for p=2, . . . , k,N=2k+1. The corresponding NLEEs can be written implicitly as

iad −1
J

∂Q

∂t
− fNΛ0ṼN (x, t) = 0 (83)

or more explicitly

iad −1
J

∂Q

∂t
− fNΛ0Λ

±

1 Λ0Λ
±

3 Λ0 · · ·Λ
±

N−2Λ0ad −1
J

[KN , Q(x, t)] = 0. (84)
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In the simplest cases N = 3 and N = 5 we get

Ṽ3(x, t) = Λ±

1 Λ0ad −1
J

[K3, Q(x, t)], K3 = f3J
3

Ṽ5(x, t) = Λ±

1 Λ0Λ
±

3 Λ0ad −1
J

[K5, Q(x, t)], K5 = f5J
5.

(85)

Then the corresponding NLEEs

iad −1
J

∂Q

∂t
− f3Λ0Λ

±

1 Λ0ad −1
J

[J 3, Q(x, t)] = 0

iad −1
J

∂Q

∂t
− f5Λ0Λ

±

1 Λ0Λ
±

3 Λ0ad −1
J

[J 5, Q(x, t)] = 0

(86)

will be systems of differential equations of order 3 and 5 respectively for the r
independent functions qα and qβ .
We will call Λ0 and Λ2k−1 elementary recursion operators. Along with them we
will introduce r fundamental recursion operators

Λ(1) = Λ0, Λ(3) = Λ0Λ1Λ0

Λ(mk) = Λ0Λ1Λ0 · · ·Λmk−2Λ0, k = 1, . . . r.
(87)

Each of these recursion operators generates an MKdV-type of NLEE

iad −1
J

∂Q

∂t
− fmk

Λmk
ad −1

J
[Jmk , Q(x, t)] = 0 (88)

where mk = 2k − 1 is an exponent of g. The equation (88) is a system of r
equations whose highest order derivative with respect to x equalsmk. Each of them
is a simplest member of a hierarchy of NLEE generated by the master recursion
operator

Λ± = Λ0Λ
±

1 Λ0Λ
±

3 Λ0 · · ·Λ
±

h−1Λ0 (89)

namely

iad −1
J

∂Q

∂t
− fmk+hpΛ

p
Λmk

ad −1
J

[Jmk , Q(x, t)] = 0, p = 1, 2, . . . . (90)

The corresponding M -operators are polynomials in λ of degree mk + ph.

Remark 6. The equation (88) with mk = 1 is in fact linear evolution equation.
However its hierarchy (90) starting with p = 1 is nontrivial.

Remark 7. The algebra so(3) is of rank 1 and its Coxeter number is h = 2. It has
only one exponent equal to 1. Thus it has only one hierarchy. The MKdV equation
is of the form (90) with p = 1.
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Again the recursion operators Λ0 and Λ±

N−2p can be obtained from the operators
Λ± for the general case

Λ±X̃⊥ = ad −1
J

(

i
∂X̃⊥

∂x
+ [Q(x, t), X̃⊥

s ]

+ i
r
∑

s=1

c−1
N−s[Q(x, t),J s](∂x)

−1
± 〈[Q(y, t), X̃⊥

s (y)],J h−s〉

) (91)

by restricting them onto the subspace g(N−2p). Note that Λ± maps g(s) into g
(s−1).

The simplest NLEE we obtain in the above way would be of MKdV-type, i.e., this
would be systems of r equations which contains third derivative with respect to x.
We end this Section recalling briefly the equivalence of the inverse scattering prob-
lem for L̃ to the RHP (56), (57). As we mentioned above the solution of the RHP
allows the asymptotic expansion (58) which can be used to prove the relation

Wν,N = ξνJ
N ξ̂ν(x, t, λ) = J N +

∞
∑

s=1

1

s!
ad s

QJ

= J N + λ−1ad Q1
J N + λ−2

(

ad Q2
JN + ad 2

Q1
J N

)

+ · · ·

(92)

where Q(x, t, λ) =
∑

∞

s=1 λ
−sQs(x, t). It is easy to check that i) for N = mk +

s0h, where mk is an exponent of g, we have that Wν,N (x, t, λ) ∈ g
(mk) is analytic

function of λ in the sector Ων ; ii) the right hand sides of the expansions (92) in fact
do not depend on ν so we will skip the index ν in what follows; iii) we can split
YN = λNWN (x, t, λ) into

λNWN (x, t, λ) = (YN (x, t, λ))+ + (YN (x, t, λ))−

(YN (x, t, λ))+ = λNJ −
N
∑

s=1

λN−sṼs(x, t) (93)

(YN (x, t, λ))− = −
∞
∑

s=N+1

λN−sṼs(x, t).

The importance of the splitting (93) is demonstrated by the next Lemma.

Lemma 8. The generating functional of theM -operators of the Zh and Dh-reduced
NLEEs are provided by YN (x, t, λ) where N can take the values N = mk + s0h
and mk is an exponent of the algebra g. The corresponding M -operator takes the
form

MN ≡ i
∂

∂t
− (YN (x, t, λ))+ (94)

and the corresponding NLEEs can be written in the form

i
∂Q

∂t
+ [J , VN+1] = 0. (95)
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Proof: It is easy to check, using the relation between ξν and χν

ξν(x, t, λ) = χ(x, t, λ)eiλJ x (96)

that YN (x, t, λ) is a solution to the equation

i
∂YN
∂x

+ [Q− λJ , YN (x, t, λ)] = 0. (97)

Therefore the compatibility condition [L̃, M̃ ] = 0 with M̃ chosen as in (94) gives

i
∂(YN )+
∂t

− i
∂Q

∂t
+ [Q− λJ , (YN )+]

= −i
∂(YN )−
∂t

− i
∂Q

∂t
− [Q− λJ , (YN )+]

= −i
∂Q

∂t
+ [J , ṼN ] +O(λ−1).

(98)

But by definition L and M are polynomial in λ. The lemma is proved. �

6. The Wronskian Relations and the Effects of Reduction

6.1. The Mapping F

We start with the Wronskian relations
(

ˆ̃χνKχ̃ν(x, t, λ)−K
)∣

∣

∣

∞

x=−∞

= i

∫

∞

−∞

dy
(

ˆ̃χν [K, Q(y, t)]χ̃ν(y, t, λ)
)

. (99)

Let us outline the technicalities in deriving the basic relations describing the map-
ping F . In doing this it will be enough to consider these relations for the two rays
l1 and l2. The left hand sides of (99) take the form

i(D̂+
1 T̂

−

1 K(T−

1 D
+
1 )− Ŝ+

1 KS
+
1 ), for λ ∈ l1

i(D̂−

2 T̂
+
2 K(T+

2 D
−

2 )− Ŝ−

2 KS
−

2 ), for λ ∈ l2.
(100)

Next we will multiply both sides of (99) by Eγ and apply the Killing form. After
this operation the right hand side of (99) acquires the form
∫

∞

−∞

dy
〈

ˆ̃χν [K, Q(y, t)]χ̃ν(x, t, λ), Eγ

〉

(101)
=

∫

∞

−∞

dy 〈[K, Q(y, t)], eν,γ(x, t, λ)〉 = −
[[

[K, ad JQ(y, t)], eν,γ(y, t, λ)
]]
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where we have introduced the ‘squared solutions’ eν,γ(x, t, λ) and the skew-scalar
product

[[

X,Y
]]

as follows

eν,γ(x, t, λ) = (χ̃ν(x, t, λ)Eγ
ˆ̃χν)

⊥

[[

X,Y
]]

=

∫

∞

−∞

dx 〈X(x), [J , Y (y)]〉 .
(102)

Then using equations (49) after some calculations we obtain the following relations

σ+1,α(λ, t) =
i

α(K)

[[

[K, ad −1
J
Q(x, t)], e1,−α(x, t, λ)

]]

, λ ∈ l1

σ−2,β(λ, t) =
1

iβ(K)

[[

[K, ad −1
J
Q(x, t)], e1,β(x, t, λ)

]]

, λ ∈ l2

τ̃−1,α(λ, t) =
i

α(K)

[[

[K, ad −1
J
Q(x, t)], e1,α(x, t, λ)

]]

, λ ∈ l1

τ̃+2,β(λ, t) =
1

iβ(K)

[[

[K, ad −1
J
Q(x, t)], e1,−β(x, t, λ)

]]

, λ ∈ l2

(103)

where α ∈ A1, β ∈ A2 and

τ̃−1,α(λ, t) = τ−1,α(λ, t)e
(α,α)d+

1,α , τ̃+2,β(λ, t) = τ+2,β(λ, t)e
−(β,β)d−

2,β .

These relations are fundamental for the analysis of the mapping F between the
space of allowed potentials Q(x, t) and the minimal set of scattering data. The
main conclusion from them is that F has the meaning of generalized Fourier trans-
form in which the ‘squared solutions’ eν,γ(x, t, λ) play the role of generalized ex-
ponents. Of course one must prove that eν,γ(x, t, λ) form complete set of functions
in the space of allowed potentials. This can be done applying the contour integra-
tion method to a certain Green functions. This will be done elsewhere. Here we
remark that the ‘squared solutions’ are eigenfunctions of the recursion operators.
To state this more precisely we write down each ‘squared solution’ as sum of its
projections according to the grading of g

eν,γ(x, t, λ) =
h−1
∑

s=0

e(s)ν,γ(x, t, λ), e(s)ν,γ(x, t, λ) ∈ g
(s) (104)

and each of this projections should be split into orthogonal and parallel part as in
equation (63)

e(s)ν,γ(x, t, λ) = e(s),⊥ν,γ (x, t, λ) + e(s),‖ν,γ (x, t, λ), e(2s),‖ν,γ (x, t, λ) = 0

e(2s+1),‖
ν,γ (x, t, λ) =

1

cs
J 2s+1

〈

J h−2s−1, e(2s+1)
ν,γ (x, t, λ)

〉

.
(105)

It is also easy to check that the squared solutions satisfy the equation

i
∂eν,γ
∂x

+ [Q(x), eν,γ(x, t, λ)]− λ[J , eν,γ(x, t, λ)] = 0. (106)
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Inserting the splitting (104) into (106) we get

i
∂e

(s
ν,γ)

∂x
+ [Q(x), e(sν,γ)(x, t, λ)]− λ[J , e(s−1

ν,γ )(x, t, λ)] = 0 (107)

s = 0, 1, . . . , h−1. Next we insert the splitting (105) and express the parallel parts
of the squared solutions through the orthogonal ones. The calculations are similar
to the ones in Subsection 5.1. Skipping the details we obtain

Λ0e
(2k),⊥
ν,γ (x, t, λ) = λe(2k−1),⊥

ν,γ (x, t, λ)

Λ±

2k−1e
(2k−1),⊥
ν,γ (x, t, λ) = λe(2k),⊥ν,γ (x, t, λ)−

a±k
ck

ad −1
J

[Q(x),J 2k−1]
(108)

where

a±k = lim
x→±∞

〈

J h−2k+1, e(2k−1)
ν,γ (x, t, λ)

〉

. (109)

If we choose ν and γ in such a way, that the constants a±k = 0 we find that
e
(h−1),⊥
ν,γ (x, t, λ) are eigenfunctions of the master recursion operator (89)

Λ±e
(h−1),⊥
ν,γ (x, t, λ) = λhe(h−1)

ν,γ (x, t, λ). (110)

6.2. The Mapping δF

The mapping between the variations of the potential and the variation of the scat-
tering data is based on the following Wronskian relation

(

i ˆ̃χνδχ̃ν(x, t, λ)
)
∣

∣

∣

∞

x=−∞

= −

∫

∞

−∞

dy ˆ̃χνδQ(y, t)χ̃ν(y, t, λ). (111)

Its left hand side on the rays l1 and l2 is given by

i(D̂+
1 T̂

−

1 δ(T
−

1 D
+
1 )− Ŝ+

1 δS
+
1 ), for λ ∈ l1

i(D̂−

2 T̂
+
2 δ(T

+
2 D

−

2 )− Ŝ−

2 δS
−

2 ), for λ ∈ l2.
(112)

Next we multiply both sides of (111) by Eγ and apply the Killing form. After this
operation the right hand side of (111) acquires the form
∫

∞

−∞

dy
〈

ˆ̃χνδQ(y, t)χ̃ν(y, t, λ), Eγ

〉

(113)
=

∫

∞

−∞

dy 〈δQ(y, t), eν,γ(y, t, λ)〉 = −
[[

ad −1
J
Q(y, t), eν,γ(y, t, λ)

]]
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where we have used the ‘squared solutions’ eν,γ(x, t, λ) and the skew-scalar prod-
uct
[[

X,Y
]]

introduced above. As a result we get

δσ+1,α(λ, t) = i
[[

ad −1
J
δQ(x), e1,−α(x, t, λ)

]]

, λ ∈ l1, α ∈ A1

δσ−2,β(λ, t) = i
[[

ad −1
J
δQ(x), e1,β(x, t, λ)

]]

, λ ∈ l2, β ∈ A2

δ′τ−1,α(λ, t) = −i
[[

ad −1
J
δQ(x), e1,α(x, t, λ)

]]

, λ ∈ l1, α ∈ A1

δτ+2,β(λ, t) = −i
[[

ad −1
J
δQ(x), e1,−β(x, t, λ)

]]

, λ ∈ l2, β ∈ A2.

(114)

where

δ′τ−1,α(λ, t) = δτ−1,α(λ, t)e
(α,α)d+

1,α , δ′τ+2,β(λ, t) = δτ+2,β(λ, t)e
−(β,β)d−

2,β .

Thus we conclude that the mapping δF also has the meaning of a generalized
Fourier transform based on the same ‘squared solutions’ eν,γ(x, t, λ) as gener-
alized exponents. This mapping and the formulae (114) are very important for
analyzing the Hamiltonian properties of the relevant NLEEs.
We can derive useful relations also by multiplying both sides of (111) by H∨

α and
applying the Killing form. The result is

〈D̂+
2ν−1δD

+
2ν−1, H

∨

α 〉 = i

∫

∞

−∞

dy 〈δQ(y, t)h∨2ν−1,α(y, t, λ)〉, λ ∈ l2ν−1

〈D̂−

2νδD
−

2ν , H
∨

β 〉 = i

∫

∞

−∞

dy 〈δQ(y, t)h∨2ν−1,β(y, t, λ)〉, λ ∈ l2ν

(115)

where h∨ν,α(x, t, λ) = χ̃νH
∨
α
ˆ̃χν(x, t, λ) and α ∈ Cν−1A1 and β ∈ Cν−1A2.

Putting ν = 1 we have

δd+1,α(λ) = −i
[[

ad J δQ(x), h∨1,α(x, t, λ)
]]

, λ ∈ l1, α ∈ A1

δd−2,β(λ) = −i
[[

ad J δQ(x), h∨1,β(x, t, λ)
]]

, λ ∈ l2, β ∈ A2.
(116)

7. The Conservation Laws and Hamiltonian Structures

In order to treat the question of the conservation laws we need to introduce yet
another type of Wronskian relations. They have the form

(

i ˆ̃χν
˙̃χν(x, t, λ)− xJ

)
∣

∣

∣

∞

x=−∞

=

∫

∞

x=−∞

dx (χ̂νJχν(x, t, λ)− J ) (117)

where by ‘dot’ we denote the derivative with respect to λ.
The reason for considering these Wronskian relations is that they are related with
the factors D±

ν and from here to the conservation laws. Indeed, the left hand side
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of equation (117) is expressed through the scattering data of L as follows
(

i ˆ̃χ1
˙̃χ1(x, t, λ)− xJ

)∣

∣

∣

∞

x=−∞

= D̂±

1 Ḋ
±

1 , λ ∈ l1e
±i0

(

i ˆ̃χ2
˙̃χ2(x, t, λ)− xJ

)
∣

∣

∣

∞

x=−∞

= D̂±

2 Ḋ
±

2 , λ ∈ l2e
∓i0.

(118)

In order to evaluate the functions d±1,α(λ) and d±2,β(λ) we can use the Killing form

ḋ±1,αj
(λ) = 〈D̂±

1 Ḋ
±

1 , H
∨

αj
〉, λ ∈ l1e

±i0, αj ∈ A1

ḋ±2,βj
(λ) = 〈D̂±

2 Ḋ
±

2 , H
∨

βj
〉, λ ∈ l2e

±i0, αj ∈ A2

(119)

where H∨
αj

and H∨

βj
are dual to Hαj

and Hβj

〈H∨

αj
, Hαk

〉 = δjk, 〈H∨

βj
, Hβk

〉 = δjk. (120)

Thus we obtain

ḋ±1,αj
(λ) =

∫

∞

−∞

dx
(

〈χ̂1Jχ1(x, t, λ), H
∨

αj
〉 − 〈J , H∨

αj
〉
)

ḋ±2,βj
(λ) =

∫

∞

−∞

dx
(

〈χ̂2Jχ2(x, t, λ), H
∨

βj
〉 − 〈J , H∨

βj
〉
)

.

(121)

The analyticity properties ofD±

k (λ) allow one to reconstruct them from the sewing
function G(λ) (56) and from the locations of their simple zeros and poles but we
are not going to treat these questions here.
It is well known, see for example [9], that the evolution equations related to the L
operators we consider, (32), (36), possess r = rank g series of conservation laws.
We will present below the formulae for the conservation laws obtained through the
theory of the recursion operators. Their advantage, comparing with the formulae
obtained via another approaches, is that they are compact in and give us the possi-
bility to understand which of the conservation laws trivialize if we have reductions.
We are speaking below about the linear problem (36). So the constant element in it
is J in (36)). The Cartan subalgebra that is relevant to the corresponding L will be
denoted by h, it equals ker(ad J ). Its orthogonal complement ((ker(ad J ))

⊥ will
be denoted by g and the orthogonal projection on it by π0. The potential function
in (36) Q, it takes values in g. The conservation laws are closely related to the ad-
joint solutions h∨ν,α(x, t, λ) = χ̃νH

∨
α
ˆ̃χν(x, t, λ), which are defined above after the

formula (115), or more generally, to the solutions hν,H(x, t, λ) = χ̃νH ˆ̃χν(x, λ),
H ∈ h, x, t ∈ R, λ ∈ Ων . Even more precisely, relevant to us are the projections
of these functions, namely haν,H(x, λ) = π0hν,H(x, λ). Here of course χ̃ν(x, λ) is
a FAS to the CBC system analytic in the sector Ων . We have obvious analogs of
the functions entering (121) which are defined for arbitrary H ∈ h, let us denote
them by d±ν,H(λ). They are analytic in the sectors Ων and for their λ-derivatives
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we have analogs of the relations (121)

ḋ±ν,H(λ) =

∫

∞

−∞

dx
(

〈 ˆ̃χνJ χ̃ν(x, t, λ), H〉 − 〈J , H〉
)

. (122)

In the sectors Ων the functions d±ν,H(λ) have the following asymptotic behavior

d±ν,H(λ) =
∞
∑

k=1

d±H,kλ
−k, |λ| � 1. (123)

One can prove that actually the coefficients in the asymptotic expansion do not
depend on the sector so we denote them by dH,s.
The analytic and asymptotic properties of the functions haν,H(x, λ) for large |λ| are
crucial for the derivation of the conservation laws and they can be found in analogy
with the case when the constant element in the operator L is real. However, though
the final formulae we obtain are the same as in the real case and the main steps in
the calculations are the same, there are some difficulties to overcome. We cannot
go into more detais so we shall just sketch the main steps in this calculation and
present the final results.
The first way to obtain the coefficients dH,s is to use the Wronskian-type relations
(117) and the analytic properties of the functions haν,H = π0χ̃νH ˆ̃χν , H ∈ h. In
this way one is able to link the expansions of q over the adjoint solutions (obtained
using the map F , see the Wronskian relations (99)) with the functions haν,H . Next
one needs to use asymptotic formulae for haν,H and from there to calculate the
quantities dH,s. Thus one can obtain the formula

dH,s =
1

s

+∞
∫

−∞

dx

x
∫

−∞

〈[J , Q],Λs
±ad −1

J
[H,Q]〉dy, s = 1, 2, . . . (124)

where Λ± are the recursion operators for the case when on q are not imposed any
conditions. One can prove that these conservation laws have local densities and are
in involution with respect to a hierarchy of symplectic forms, see below.
The second way of obtaining the conservation laws is to use the Wronskian type
relations involving the variation of the potential δQ, see (111). In this way we get
the formula

δdH,s = −i

+∞
∫

−∞

〈δQ,Λs−1
± ad −1

J
[H,Q]〉dx, s = 1, 2, . . . (125)

which is more popular in another form. In order to obtain it, let us identify the space
MJ consisting of Schwartz-type functions on the line with values in h

⊥ = g and
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its dual M∗

J
through the bilinear form

〈〈X,Y 〉〉 =

+∞
∫

−∞

〈X(x), Y (x)〉dx.

In other words, we shall consider the elements from M∗

J
as generalized functions

(distributions) and a generalized function, say ξ, will be written as

〈〈ξ, Y 〉〉 =

+∞
∫

−∞

〈ξ(x), Y (x)〉dx, Y (x) ∈ MJ .

As a matter of fact the generalized functions we have are regular, that is represented
by locally Lebesgue integrable functions over R, and even most of them belong to
MJ . Taking into account the identification for the differentials of the conservation
laws we get

ddH,s = −iΛs−1
± ad −1

J
[H,Q] (126)

and hence
ddH,s = Λ±ddH,s−1, s = 2, 3, . . . . (127)

The above relations in the case g = sl(2,C) are called Lenart relations, see [2], so
we shall call them Lenart-type relations or Lenart chains.
In fact one can prove that with the above identification ddν,H = ihaν,H which
explains why the functions haν,H are so important in the study of the conservation
laws. Using (127) and the Poincaré lemma for closed one-forms one gets another
formula

dH,s = −i

+∞
∫

−∞

dx

1
∫

0

〈Q,Λs−1
± |(ζQ) ad −1

J
[H, ζQ]〉dζ (128)

where by Λ±|(ζQ) is denoted the recursion operator in which Q is substituted by
Q′ = ζQ. This formula can be obtained also directly. Indeed, let us consider
instead of the potential q the potential Q′ = ζQ where 0 ≤ ζ ≤ 1 is a real
parameter. Let us consider variation of the potential Q′ of the form δQ′ = Qδζ.
Then (125) implies

d

dζ
dH,s = −i

+∞
∫

−∞

〈Q,Λs−1
± |Q→Q′ad −1

J
[H,Q′]〉dx, s = 1, 2, . . . . (129)

Integrating over ζ between 0 and 1 and taking into account that for ζ = 0 we have
Q′ = 0, dH,s = 0 and for ζ = 1 we have Q′ = Q we obtain the formula (128).
When one calculates the hierarchy of conservation laws the last form of the con-
servation laws can be a real advantage as the expressions become more and more
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complicated when s increases and in it Λ± enters with power s− 1 while in (124)
Λ± enters with power s.
When one has Zh reductions the above formulae for the conservation laws remain
true and naturally the conservation laws continue to have local densities. However,
one can observe that some of them trivialize, that is they become identically zero.
Indeed, since ad −1

J
takes g(k) into g

(k−1), Λm
± takes functions with values in g

(k)

to functions with values in g
(k−m) so if H ∈ h

(k) = g
(k) ∩ h (k must be exponent

of course) then unless k−s = 0 (mod(h)) the expression (124) is identically zero.
Of course, the same conclusion is obtained if one uses the expression (128). Then
assumming that 0 ≤ k ≤ h− 1 for example in the hierarchies (124) ‘survive’ only
the following integrals of motion

+∞
∫

−∞

dx

x
∫

−∞

〈[J , Q], (Λp
±)

nΛh−k
± ad −1

J
[H,Q]〉dy, n = 1, 2, . . . (130)

or, if one prefers the notation through Λ±, as for example in (110), from the hier-
archy of integrals of motion remain only

+∞
∫

−∞

dx

x
∫

−∞

〈[J , Q],Λn
±(Q[H, k])〉dy, n = 1, 2, . . .

(131)
Q[H, k] = Λh−k

± ad −1
J

[H,Q].

One sees that Q[H, k] takes values in g
(h−1) and the role of the recursion operator

is played now by Λ±. The observation that in case of reductions Zh reductions
have gaps in the conservation laws sequencie has been made in [32].
Maybe we must say here that we went a bit too quickly into the discussion of
the conservation laws. In fact we ought to discuss first equation (126) and the
Lenart chains. One can see that when we have reductions (126) should be modified
because when one identifies a linear functional over g(0) with an element from g

this element should belong to g
(0), because g(0) is orthogonal to g

(k) for k 6= 0. So
in case we have reductions (126) should be replaced by

ddH,s = −ip0Λ
s−1
± ad −1

J
[H,Q] (132)

where p0 is the orthogonal projection on g
(0). Thus one sees again that if H ∈ h

(k)

then unless k− s = 0 (mod(h)) the above expression is identically zero. It is also
readily seen that the Lenart chains generate from a given nontrivial conservation
law a nontrivial one if one acts not with Λ± but with Λh

±, or if one prefers by Λ±

as for example in (110). As an illustration we give the two first integrals of motion
of the Zh-DNLS equation

I
(1)
1,1 =

1

2ω

∫

∞

−∞

dx
n
∑

p=1

ψpψn−p(x, t) (133)
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I
(2)
1,1 =

1

2ω2

∫

∞

−∞

dx







n
∑

p=1

i cotan
(πp

n

)

(

dψp

dx
ψn−p − ψp

dψn−p

dx

)

−
2

3

∑

p+k+l=n

ψpψkψl(x, t)







. (134)

Let us mention very briefly the hierarchies of the Hamiltonian structures for the
soliton equations we study. Two approaches are possible here. One is based on the
hierarchy of Poisson structures, the other on the hierarchy of symplectic structures.
The Poisson structures are easier to construct in the general case of non-restricted
systems, see for example [29]. From the other side, if one has reductions then
one must calculate the corresponding Dirac brackets. The symplectic structures
seem more complicated to construct but offer the advantage that the restrictions
are immediate, provided they do not degenerate. It is well-known that the equa-
tions without any reductions possess a hierarchy of Hamiltonian structures with
symplectic forms Ωm that can be written as follows

Ωm(X,Y ) =

+∞
∫

−∞

〈X,Λm
±ad −1

J
(Y )〉dx (135)

where X(x), Y (x) are smooth functions with values in g – the orthogonal com-
plement of h, see [20] and the numerous citations therein. However, due to the
fact that q takes values in g

(0) some of these structures degenerate. Indeed, if
X,Y take values in g

(0) then ad −1
J
Y takes values in g

(−1), Λm
±ad −1

J
Y takes val-

ues in g
(−m−1) and unless m + 1 = 0 (mod(h)) the form is identically zero. Let

m = kh− 1. Then

Ωm(X,Y ) =

+∞
∫

−∞

〈X, (Λh
±)

kΛ−1
± ad −1

J
(Y )〉dx = Ω−1(X, (Λ

h
±)

k(Y )) (136)

again demonstrating that the operator that generates the symplectic structures is
now Λ± = Λh

±. This fact has been also proved with geometric methods in [40]
using the theory of the so-called Poisson-Nijenhuis manifolds.

8. Conclusions

As it is well-known, the generic integrable NLEEs related with the generalized
Zakharov-Shabat system and its generalization – the CBC system defined on a
semisimple Lie algebra of rank r possesses a number of interesting properties.
Among them are: they possess a hierarchy of Hamiltonian structures, r series of
conservation laws etc. Both the Hamiltonian hierarchy and the series of conser-
vation laws are generated by a certain recursion operator (called also Λ-operator)
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[1, 11, 14, 15, 19, 20]. Its spectral properties and the expansions over the eigenvec-
tors of Λ have deep applications to the theory of the corresponding NLEEs, see
e.g. [20]. The case when we have reductions is of big importance and in this case
we have some specifics, see [11], which must be taken care of when studying the
properties of the corresponding Λ-operator. In this article we analysed Zh and Dh

reductions. In case we have these type of reductions and we have NLEE repre-
sented in a Lax form [L,M ] = 0 with Lψ = 0 being a CBC type system with
reductions, the coefficient in front of the leading power of λ in the operator M see
(35) should be an exponent of the corresponding algebra g. Since 2 is an exponent
only for the series Ar, there would be no new examples of Zh-reduced Nonlinear
Schrödinger type equations. However, 3 is an exponent for all the algebras from
the classical series. Therefore choosing M in the Lax representation to be cubic
in λ one gets series of KdV type equations and the simplest of them are already
known, see [8,9,38]. The theory we develop applies to these type of equations and
of course to those corresponding to exponents larger than 2 and 3.
Our results show the specific way the generating operator factorizes in case of re-
ductions. Along with the elementary recursion operators – the restriction of the
standard Λ on g

(k), we have introduced fundamental recursion operators Λ(mk)

and the master recursion operator Λ. The operators Λ(mk) generate the MKdV-
type NLEEs, and combined with Λ – the hierarchy of their Hamiltonian structures.
Thus we have outlined the effects of the reduction group on the recursion opera-
tors. Important questions, that will be answered in next publications concern the
spectral theory of the recursion operators, see [14–16,19,22] and their geometrical
properties, see [31, 40, 41, 46] and the monograph [20].

Acknowledgements

One of us (A. B. Ya.) is grateful to NRF South Africa incentive grant 2013 for the
financial support.

References
[1] Ablowitz A., Kaup D., A., Newell A. and Segur H., The Inverse Scattering Transform

– Fourier Analysis for Nonlinear Problems, Studies in Appl. Math. 53 (1974) 249–
315.

[2] Adler M., On a Trace Functional for Formal Pseudo-Differential Operators and the
Symplectic Structure of the Korteweg-de Vries Equations, Inv. Math. 50 (1979) 219–
248.

[3] Beals R. and Coifman R., Scattering and Inverse Scattering for First Order Systems,
Commun. Pure & Appl. Math. 37 (1984) 39–90.

[4] Beals R. and Coifman R., Inverse Scattering and Evolution Equations. Commun.
Pure & Appl. Math. 38 (1985) 29–42.

[5] Beals R. and Sattinger D, On the Complete Integrability of Completely Integrable
Systems, Comm. Math. Phys. 138 (1991) 409–436.



150 Vladimir S. Gerdjikov and Alexandar B. Yanovski

[6] Caudrey P., The Inverse Problem for the Third Order Equation uxxx + q(x)ux +
r(x)u = −iζ3u., Phys. Lett. A 79A (1980) 264–268;
The Inverse Problem for a General n × n Spectral Equation, Physica D 6 (1982)
51–66.

[7] Calogero F. and Degasperis A., Spectral Transform and Solitons, North Holland,
Amsterdam 1982.

[8] Chvartatskyi O. and Sydorenko Yu., Matrix Generalizations of Integrable Systems
with Lax Integro-Differential Representations, nlin.SI ArXiv1212.3444.

[9] Drinfel’d V. and Sokolov V., Lie Algebras and Equations of Korteweg-de Vries Type,
Sov. J. Math. 30 (1985) 1975–2036.

[10] Faddeev L. and Takhtadjan A., Hamiltonian Methods in the Theory of Solitons,
Springer, Berlin 1987.

[11] Fordy A. and Gibbons J., Factorization of Operators II, J. Math. Phys. 22 (1981)
1170–1175.

[12] Fordy A. and Kulish P., Nonlinear Schrödinger Equations and Simple Lie Algebras,
Commun. Math. Phys. 89 (1983) 427–443.

[13] Gerdjikov V., ZN–Reductions and New Integrable Versions of Derivative Nonlin-
ear Schrödinger Equations, In: Nonlinear Evolution Equations: Integrability and
Spectral Methods, A. Fordy, A. Degasperis and M. Lakshmanan (Eds), Manchester
University Press, Manchester 1981, pp. 367–372.

[14] Gerdjikov V., On the Spectral Theory of the Integro-differential Operator Λ, Gener-
ating Nonlinear Evolution Equations, Lett. Math. Phys. 6 (1982) 315–324.

[15] Gerdjikov V., Generalised Fourier Transforms for the Soliton Equations. Gauge Co-
variant Formulation, Inverse Problems 2 (1986) 51–74.

[16] Gerdjikov V., Algebraic and Analytic Aspects of N -wave Type Equations. Contem-
porary Mathematics 301 (2002) 35–68, nlin.SI/0206014.

[17] Gerdjikov V., Derivative Nonlinear Schrödinger Equations with ZN and DN–
Reductions, Romanian Journal of Physics 58 (2013) (in press).

[18] Gerdjikov V., Grahovski G., Ivanov R. and Kostov N., N -Wave Interactions Related
to Simple Lie Algebras– Z2-Reductions and Soliton Solutions, Inverse Problems 17
(2001) 999–1015.

[19] Gerdjikov V. and, Kulish P., The Generating Operator for the n × n Linear System,
Physica D 3 (1981) 549–564.

[20] Gerdjikov V., Vilasi G. and Yanovski A., Integrable Hamiltonian Hierarchies. Spec-
tral and Geometric Methods, Lecture Notes in Physics 748, Springer, Berlin 2008.

[21] Gerdjikov V. and Yanovski A., Gauge Covariant Formulation of the Generating Op-
erator. I. The Zakharov–Shabat System, Phys. Lett. A 103 (1984) 232–236.

[22] Gerdjikov V. and Yanovski A., Completeness of the Eigenfunctions for the Caudrey-
Beals-Coifman System, J. Math. Phys. 35 (1994) 3687–3725.

[23] Grahovski G., On The Reductions and Scattering Data for the CBC System, Geome-
try, Integrability and Quantization 3 (2002) 262–277.

[24] Gürses M., Karasu A. and Sokolov V. On Construction of Recursion Operators From
Lax Representation, J. Math. Phys. 40 (1999) 6473, doi:10.1063/1.533102 (18 pages)



On Soliton Equations with Zh and Dh Reductions: Conservation Laws . . . 151

[25] Helgasson S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic,
New York 1978.

[26] Kaup D. and Newell A., Soliton Equations, Singular Dispersion Relations and Mov-
ing Eigenvalues, Adv. Math. 31 (1979) 67–100.

[27] Konopelchenko B., Nonlinear Integrable Equations: Recursion Operators, Group
Theoretical and Hamiltonian Structures of Soliton Equations, Lecture Notes in
Physics 270, Springer, Berlin 1987.

[28] Kulish P. and Reyman A., The Hierarchy of Symplectic Forms for the Schrödinger
Equation and for the Dirac Equation (in Russian), Sci. Notes of LOMI seminars 77
(1978) 134–147 .

[29] Kulish P. and Reiman A., Hamiltonian Structure of Polynomial Bundles (in Russian),
Sci. Notes. LOMI Seminars 123 (1983) 67–76; Translated in J. Sov. Math. 28 (1985)
505–513.

[30] Kuperschmidt B. and Wilson G., Conservation Laws and Symmetries of Generalized
Sine-Gordon Equations, Commun. Math. Phys. 81 (1981) 189–202.

[31] Ludu A., Differential Geometry of Moving Surfaces and its Relation to Solitons, J.
Geom. Symmetry Phys. 21 (2011) 1–28, doi:10.7546/jgsp-21-2011-1-28

[32] Mikhailov A., The Reduction Problem and the Inverse Scattering Problem, Physica
D 3 (1981) 73–117.

[33] Mikhailov, A., Olshanetzky, M. and Perelomov, A., Two Dimensional Generalized
Toda Lattice, Commun. Math. Phys. 79 (1981) 473–490.

[34] Olive D. and Turok N., The Toda Lattice Field Theory Hierarchies and Zero-
curvature Conditions in Kac-Moody Algebras, Nucl. Phys. B 265 (1986) 469–484.

[35] Olshanetzky M. and Perelomov A., Classical Integrable Systems Related to Lie Al-
gebras, Phys. Repts. 71 (1983) 313–404.

[36] Schmid R., Infinite Dimentional Lie Groups with Applications to Mathematical
Physics, J. Geom. Symmetry Phys. 1 (2004) 54-120, doi:10.7546/jgsp-1-2004-54-
120

[37] Shabat A., The Inverse Scattering Problem for a System of Differential Equations (in
Russian), Functional Annal. & Appl. 9 (1975) 75-78;
Shabat A., The Inverse Scattering Problem (in Russian), Diff. Equations 15 (1979)
1824–1834.

[38] Valchev T., On the Kaup-Kupershmidt Equation. Completeness Relations for the
Squared Solutions, In: Proc. 9-th International Conference on Geometry, Integra-
bility and Quantization, I. Mladenov and M. de Leon (Eds), Softex, Sofia 2008, pp.
308–319.

[39] Valchev T., On Generalized Fourier Transform for Kaup-Kupershmidt Type Equa-
tions, J. Geom. Symmetry Phys. 19 (2010) 73–86, doi:10.7546/jgsp-19-2010-73-86

[40] Yanovski A., Geometry of the Recursion Operators for Caudrey-Beals-Coifman Sys-
tem in the Presence of Mikhailov Zp Reductions, J. Geom. Symmetry Phys. 25 (2012)
77–97.

[41] Yanovski A., Geometric Interpretation of the Recursion Operators for the General-
ized Zakharov-Shabat System in Pole Gauge on the Lie Algebra A2, J. Geom. Sym-
metry Phys. 23 (2011) 97–111. doi:10.7546/jgsp-23-2011-97-111



152 Vladimir S. Gerdjikov and Alexandar B. Yanovski

[42] Zakharov V., Manakov S., Novikov S. and Pitaevskii L., Theory of Solitons: The
Inverse Scattering Method, Consultants Bureau, New York 1984.

[43] Zakharov V. and Manakov S., The Theory of Resonant Interaction of Wave Packets
in Nonlinear Media (in Russian), Sov. Phys. JETP 69 (1975) 1654–1673.

[44] Zakharov V. and Mikhailov A., Relativistically Invariant Two-dimensional Models
of Field Theory Which are Integrable by Means of the Inverse Scattering Problem
Method, Zh. Eksp. Teor. Fiz. 74 (1978) 1953–1973.

[45] Zakharov V. and Shabat A., A Scheme for Integrating Nonlinear Evolution Equations
of Mathematical Physics by the Inverse Scattering Method I, Funkts. Anal. Prilozhen.
8 (1974) 43–53.

[46] Yanovski A. and Vilasi G., Geometric Theory of the Recursion Operators for the
Generalized Zakharov–Shabat System in Pole Gauge on the Algebra sl(n,C) with
and without Reductions, SIGMA 8 (2012) 087, 23 pp.



International Conference on Integrability
Recursion Operators and Soliton Interactions
29-31 August 2012, Sofia, Bulgaria
B. Aneva, G. Grahovski
R. Ivanov and D. Mladenov, Eds
Avangard Prima, Sofia 2014, pp 153–164

ON THE PERSISTENCE PROPERTIES OF THE
CROSS-COUPLED CAMASSA-HOLM SYSTEM∗

DAVID HENRY, DARRYL HOLM† and ROSSEN IVANOV‡

School of Mathematical Sciences, University College Cork, Cork, Ireland

† Department of Mathematics, Imperial College London, London SW7 2AZ, UK

‡ School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street
Dublin 8, Ireland

Abstract. In this paper we examine the evolution of solutions, of a recently-
derived system of cross-coupled Camassa-Holm equations, that initially have
compact support. The analytical methods which we employ provide a full
picture for the persistence of compact support for the momenta. For the so-
lutions of the system itself, the answer is more convoluted, and we determine
when the compactness of the support is lost, replaced instead by an exponen-
tial decay rate.

1. Introduction

This paper is concerned with the persistence of compact support in solutions to
a recently derived cross-coupled Camassa-Holm (CCCH) equation [7], which is
given by

mt + 2vxm+ vmx = 0, nt + 2uxn+ unx = 0 (1)

where m = u − uxx and n = v − vxx. This system generalises the celebrated
Camassa-Holm (CH) equation [1], since for u = v the system (1) reduces to two
copies of the CH equation

mt + 2uxm+ umx = 0.

The CH equation models a variety of phenomena, including the propagation of uni-
directional shallow water waves over a flat bed [1, 8, 12, 16, 17]. The CH equation

∗Reprinted from J. Geom. Symmetry Phys. 32 (2013) 1–13.
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possesses a very rich structure, being an integrable infinite-dimensional Hamilton-
ian system with a bi-Hamiltonian structure and an infinitely many conservation
laws [1, 4, 15]. It also has a geometric interpretation as a re-expression of the
geodesic flow on the diffeomorphism group of the circle [14]. One of the most
interesting features of the CH equation, perhaps, is the rich variety of solutions it
admits. Some solutions exist globally, whereas others exist only for a finite length
of time, modelling wave breaking [3, 6].
The CCCH equation can be derived from a variational principle as an Euler-Lagran-
ge system of equations for the Lagrangian

l(u, v) =

∫

R

(uv + uxvx) dx.

Alternatively it can be formulated as a two-component system of Euler-Poincaré
(EP) equations in one dimension on R as follows

∂tm = −ad∗δh/δmm = − (vm)x −mvx with v :=
δh

δm
= K ∗ n

∂tn = −ad∗δh/δnn = − (un)x − nux with u :=
δh

δn
= K ∗m

with K(x, y) = 1
2e

−|x−y| being the Green function of the Helmholtz operator, and
h being the Hamiltonian defined via the convolution in the spatial variable

h(n,m) =

∫

R

nK ∗mdx =

∫

R

mK ∗ n dx.

This Hamiltonian system has two-component singular momentum map [13]

m(x, t) =
M
∑

a=1

ma(t) δ(x− qa(t)), n(x, t) =
N
∑

b=1

nb(t) δ(x− rb(t)).

The M = N = 1 case is very simple for analysis [7]. If the initial conditions
are m1(0) > 0 and n1(0) > 0 then one observes the so-called waltzing motion.
It could be noted that for half of the waltzing period (half cycle) the two types of
peakons exchange momentum amplitudes - see Fig. 1. The explicit solutions as
well as other examples with waltzing peakons and compactons are given in [7].
The aim of this study is to analyse the persistence of compact support for solutions
of the system (1). In particular, we will examine whether the solution m,n, and in
turn u, v, of (1), which initially have compact support, will continue to have that
property as they evolve. Solutions of the system which have compact support can
be viewed as localized disturbances, and whether a “disturbance” which is initially
localized propagates with a finite, or infinite speed, is a matter of great interest. We
will see that some solutions will remain compactly supported at all future times of
their existence, while others solution display an infinite speed of propagation and
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Figure 1. Plot showing velocity fields of a peakon-peakon pair with
m1(0) = 10, n1(0) = 1 (solid lines). The dotted path indicates the
subsequent path of the two peaks in the frame travelling at the particles
mean velocity. For these initial conditions the total period for one orbit
of the cycle is T = 3.6. Also shown is the form of the two peakons at
subsequent times t = 0.45 + 1.8n, n ∈ Z.

instantly lose their compact support. These results have analogues in the case of
CH equation [2, 9, 11].

2. Preliminaries

We may express equation (1) in terms of u and v as follows

ut − uxxt + 2vxu− 2vxuxx + vux − vuxxx = 0

vt − vxxt + 2uxv − 2uxvxx + uvx − uvxxx = 0.
(2)

From this form of the equations one observes that there are no terms with self-
interaction (e.g. uux, uxuxx, uuxxx etc.) which justifies the name ‘cross-coupled’.
If p(x) = 1

2e
−|x|, x ∈ R, then (1 − ∂2

x)
−1f = p ∗ f for all f ∈ L2(R) and so

p ∗m = u, p ∗ n = v. Indeed,

u(x) =
1

2
e−x

∫ x

−∞

eym(y) dy +
1

2
ex

∫

∞

x

e−ym(y) dy (3)

ux(x) = −
1

2
e−x

∫ x

−∞

eym(y) dy +
1

2
ex

∫

∞

x

e−ym(y) dy. (4)
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In other words, if we denote by I1(x) and I2(x) the integrals appearing in the first
and the second term of (3), we have

u = I1 + I2, ux = −I1 + I2. (5)

Applying the convolution operator to equation (1) we can cast it in the form of a
conservation law

(u+ v)t + ∂x (uv + p ∗ (2uv + uxvx)) = 0, x ∈ R, t ≥ 0. (6)

Thus L = u + v is a density of the conserved momentum
∫

(m + n)dx. The
representation (6) agrees with the CH reduction when u = v, cf. [9].
The Hamiltonian

H =

∫

(uv + uxvx)dx

(in terms of u and v) is of course another conserved quantity, the ‘energy’ of the
system, see more details in [7].
One can directly observe that (1) can be complexified in a natural way if the vari-
ables u, v are assumed complex, while the independent variables x, t are still real.
Such a complexified system is remarkable with the fact that it admits the obvious
reduction u = v̄ which leads to a single scalar complex equation

ut − uxxt + 2ūxu− 2ūxuxx + ūux − ūuxxx = 0. (7)

This is a geodesic equation for a complex H1 metric, given by the Hamiltonian
H = 1

2

∫

(|u|2 + |ux|
2)dx.

Of course, if one reverts to real dependent variables by putting u = r+ is then (7)
leads to the coupled system

rt − rxxt + 2(rrx + ssx)− 2(rxrxx + sxsxx)− (rrxxx + ssxxx) = 0

st − sxxt + rxs− rsx − 2(rxsxx − sxrxx)− (rsxxx − srxxx) = 0.
(8)

Unless it is explicitly specified that the variables (u, v) are complex, we assume
that they are real.

3. Results

In the following we let T = T (u0, v0) > 0 to denote the maximal existence time
of the solutions u(x, t), v(x, t) to the system (1) with the given initial data u0(x)
and v0(x).
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3.1. Persistence of Compact Support for the Momenta

For the following, the flow prescribed by the system (1) is given by the two families
of diffeomorphisms {ϕ(·, t)}t∈[0,T ), {ξ(·, t)}t∈[0,T ) as follows

ϕt(x, t) = v(ϕ(x, t), t), ϕ(x, 0) =x

ξt(x, t) =u(ξ(x, t), t), ξ(x, 0) =x.
(9)

Solving (9), we get

ϕx(x, t) = e
∫
t

0
vx(ϕ(x,s),s)ds and ξx(x, t) = e

∫
t

0
ux(ξ(x,s),s)ds > 0 (10)

hence ϕ(·, t) and ξ(·, t) are increasing functions.

Lemma 1. Assume that u0 and v0 are such that m0 = u0 − u0,xx and n0 =
v0 − v0,xx are nonnegative (nonpositive) for x ∈ R. Then m(x, t) and n(x, t)
remain nonnegative (nonpositive) for all t ∈ [0, T ).

Proof: It follows from (1) that

d

dt
m(ϕ(x, t), t)ϕ2

x(x, t) = mtϕ
2
x +mxϕtϕ

2
x + 2mϕxϕxt

= (mt + 2vxm+ vmx)ϕ
2
x = 0

and

d

dt
n(ξ(x, t), t)ξ2x(x, t) = ntξ

2
x + nxξtξ

2
x + 2mξxξxt

= (nt + 2uxn+ unx)ξ
2
x = 0.

Therefore

m(ϕ(x, t), t)ϕ2
x(x, t) = m0(x), n(ξ(x, t), t)ξ2x(x, t) = n0(x). (11)

Now, since m0(x), n0(x) are nonnegative (nonpositive) then m(x, t) and n(x, t)
remain nonnegative (nonpositive) for all t ∈ [0, T ). �

Lemma 2. Assume that u0 is such that m0 = u0 − u0,xx has compact support,
say contained in the interval [αm0

, βm0
], then for any t ∈ [0, T ), the function

x 7→ m(x, t) has compact support contained in the interval [ϕ(αm0
, t), ϕ(βm0

, t)]
for all t ∈ [0, T ). Similarly, if n0 = v0 − v0,xx has compact support, then the
function x 7→ n(x, t) is compactly supported for all t ∈ [0, T ).

Proof: From (11) and from the assumption that m0(x) is supported in the compact
interval [αm0

, βm0
], it follows directly that m(·, t) are compactly supported, with

support contained in the interval [ϕ(αm0
, t), ϕ(βm0

, t)], for all t ∈ [0, T ). Similar
reasoning applies to n0. �
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Relation (11) represents the conservation of momentum in the physical variables
cf. discussion in [7].

3.2. On the Evolution of (u, v)

In this subsection we are going to examine the general behaviour of the solution
(u, v) of (1) which is initially compactly supported. The following theorem pro-
vides us with some information about the asymptotic behavior of the solution as it
evolves over time – in general, the solution has an exponential decay as |x| → ∞
for all future times t ∈ [0, T ).

Theorem 3. Let (u, v) be a nontrivial solution of (1), with maximal time of ex-
istence T > 0, and which is initially compactly supported on an interval I0 =
[αu0

, βu0
]× [αv0 , βv0 ]. Then we have

u(x, t) =

{

1
2E

u
+(t)e

−x for x > ξ(βu0
, t)

1
2E

u
−(t)e

x for x < ξ(αu0
, t)

(12)

v(x, t) =

{

1
2E

v
+(t)e

−x for x > ϕ(βv0 , t)
1
2E

v
−(t)e

x for x < ϕ(αv0, t)
(13)

where α, β are defined in (14) below, and Eu
−, E

u
+, E

v
−, E

v
+ are continuous func-

tions, with Eu
+(0) = Ev

+(0) = Eu
−(0) = Ev

−(0) = 0.

Proof: Firstly, if (u0, v0) is initially supported on the compact interval I0 =
[αu0

, βu0
] × [αv0 , βv0 ] then so is m0 too, and from the proof Lemma 2 it fol-

lows that (m(·, t), n(·, t)) is compactly supported, with its support contained in
the interval It = [ξ(α, t), ξ(β, t)]× [ϕ(α, t), ϕ(β, t)] for fixed t ∈ [0, T ). Here

α = min{αu0
, αv0}, β = max{βu0

, βv0}. (14)

We use the relation u = p ∗m to write

u(x) =
1

2
e−x

∫ x

−∞

eym(y) dy +
1

2
ex

∫

∞

x

e−ym(y) dy

and then we define

Eu
+(t) =

∫ ξ(β,t)

ξ(α,t)
eym(y, t) dy and Eu

−(t) =

∫ ξ(β,t)

ξ(α,t)
e−ym(y, t)dy. (15)

We have

u(x, t) =
1

2
e−xEu

+(t), x > ξ(β, t)

u(x, t) =
1

2
exEu

−(t), x < ξ(α, t)

(16)
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and therefore from differentiating (16) we get directly

1

2
e−xEu

+(t) =u(x, t) = −ux(x, t) = uxx(x, t), x > ξ(β, t)

1

2
exEu

−(t) =u(x, t) = ux(x, t) = uxx(x, t), x < ξ(α, t).

Since u(·, 0) is supported in the interval [α, β], we have Eu
+(0) = Eu

−(0) = 0, as
we can see by taking integration by parts and taking into account that the boundary
terms vanish. �

Corollary 4. If in addition m0(x) and n0(x) are everywhere nonnegative (non-
positive), then the solution (u, v) (if nontrivial) loses its compactness immediately.

Proof: Indeed, in order for a nontrivial solution to remain with compact support
one needs that Eu

±(t)≡ 0, Ev
±(t) ≡ 0 for all t ∈ [0, T ]. However from Lemma 1 it

follows that m(x, t) and n(x, t) remain everywhere nonnegative (nonpositive) and
thus the quantities Eu

±(t), E
v
±(t) defined e.g. in (15) are positive (negative) for all

t ∈ (0, T ] in the case we have nontrivial solution. �

From (6) we know that L = u+ v is a density of a conserved quantity and as such
it deserves a special attention. From Theorem 3 one can find the asymptotics of L
as x → ±∞ as

L →
1

2
E±(t)e

−|x|

where E± ≡ Eu
± + Ev

±. Since the nature of the solution that we expect is several
coupled ‘waltzing’ waves, i.e., the maximum elevations of u(x, t) and v(x, t) in-
crease and decrease with time in the waltzing process. In other words the functions
Eu

±(t) and Ev
±(t) are in general non-monotonic functions of t. However in some

cases a monotonic property holds for the conserved density L.

Theorem 5. If (u, v) is an initially compactly supported solution and in addi-
tion m0(x) and n0(x) are everywhere nonnegative (nonpositive), then the quan-
tity E+(t) is a monotonically increasing function and E−(t) is a monotonically
decreasing function.

Proof: Indeed, from Lemma 1 it follows that the functions m(x, t) and n(x, t)
remain everywhere nonnegative (nonpositive) and from the explicit form of the in-
verse Helmholtz operator u(x, t) and v(x, t) remain everywhere nonnegative (non-
positive). Since m(·, t) is supported in the interval [ξ(α, t), ξ(β, t)], for each fixed
t, the derivative is given by

dEu
+(t)

dt
=

∫ ξ(β,t)

ξ(α,t)
eymt(y, t)dy =

∫

∞

−∞

eymt(y, t)dy.
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Similarly, if we define

Ev
+(t) =

∫ ϕ(β,t)

ϕ(α,t)
eym(y, t) dy and Ev

−(t) =

∫ ϕ(β,t)

ϕ(α,t)
e−ym(y, t)dy

then Ev
+(0) = Ev

−(0) = 0 and

dEv
+(t)

dt
=

∫

∞

−∞

eynt(y, t)dy.

From (2) and integration by parts we have

dE+(t)

dt
=

∫

∞

−∞

ey(mt(y, t) + nt(y, t)) dx = −

∫

R

ex [2vx(u− uxx)

+v(u− uxx)x + 2ux(v − vxx) + u(v − vxx)x] dx

=

∫

∞

−∞

ey (2uv + uxvx) dy, t ∈ [0, T )

where all boundary terms after integration by parts vanish, since the functions
m(·, t), n(·, t) have compact support and u(·, t), v(·, t) decay exponentially at
±∞, for all t ∈ [0, T ). Using (5) for u = Iu1 + Iu2 , ux = −Iu1 + Iu2 , v = Iv1 + Iv2 ,
vx = −Iv1 + Iv2 , and noticing that all integrals Iu,v1,2 are all nonnegative (nonposi-
tive), we have that

2uv + uxvx = 3Iu1 I
v
1 + Iu2 I

v
1 + Iu1 I

v
2 + 3Iu2 I

v
2

and thus
dE+(t)

dt
> 0. (17)

Similarly, we have

dE−(t)

dt
=

∫

∞

−∞

e−y(mt(y, t) + nt(y, t)) dx

= −

∫

∞

−∞

e−y (2uv + uxvx) dy < 0, t ∈ [0, T ) (18)

for analogous reasons as before. �

3.3. Evolution in the Case u = v̄ when Initially Functions are Compactly
Supported

Some analytical results can be established in the case u = v̄, for example one can
prove immediately the analogue of Theorem 5.

Theorem 6. If u = v̄ is initially compactly supported, then E− = (Eu
−+Ev

−)(t) is
a decreasing function, with E−(0) = 0, and E+(t) is increasing, with E+(0) = 0.
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Proof: Follows the lines of the proof of Theorem 5. In our case 2uv + uxvx =
2|u|2 + |ux|

2 ≥ 0 and for nontrivial solutions this expresion is positive at some
point. �

The following Lemma is proved by making extensive use of relation (3).

Lemma 7 ([9]). . Let (u, v) be a solution of system (1), and suppose u is such that
m = u − uxx has compact support. Then, for each fixed time 0 < t < T , u has
compact support if and only if

∫

R

exm(x) dx =

∫

R

e−xm(x) dx = 0. (19)

The equivalent relation holds for the functions v and n.

We now establish a relation which is satisfied by solutions of (1) whose support
remains compact throughout their evolution. This relation will have profound im-
plications for solutions (u, v) of (1) which have a direct relation to each other, as
we shall see in Corollary (9).

Theorem 8. Let us assume that the functions u0, v0 have compact support, and
let T > 0 be the maximal existence time of the solutions u(x, t), v(x, t) which
are generated by this initial data. If, for every t ∈ [0, T ), the function x 7→
(u(x, t), v(x, t)) has compact support, then
∫

R

ex (2uv + uxvx) dx =

∫

R

e−x (2uv + uxvx) dx = 0 for t ∈ [0, T ). (20)

Proof: By the assumptions of this theorem, Lemma 7 applies. Using (1) and dif-
ferentiating the left hand side of (19) with respect to t we get

d

dt

∫

R

ex (m+ n) dx = −

∫

R

ex (2vxm+ vmx + 2uxn+ unx) dx

=

∫

R

ex (2uv + uxvx) dx = 0

similarly to the proof of Theorem 5. The final equality follows from the fact that
identity (19) holds for all t ∈ [0, T ), according to Lemma 7.
Similarly, we get

d

dt

∫

R

e−x (m+ n) dx = −

∫

R

e−x (2uv + uxvx) dx = 0. (21)

Therefore,
∫

R

ex (2uv + uxvx) dx =

∫

R

e−x (2uv + uxvx) dx = 0, t ∈ [0, T ). (22)

The expression under the integral on the right hand side of this relation must be
identically zero by (19). This completes the proof. �
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Corollary 9. Let us suppose that u(x, t) = v̄(x, t). Then the only solution (u, v)
of (1), i.e., (7) is compactly supported over a positive time interval is the trivial
solution u ≡ v ≡ 0. That is to say, any non-trivial solution (u, v) of (7) which
is initially compactly supported instantaneously loses this property, and so has an
infinite propagation speed.

Proof: The statement follows directly from the relations in (22). �

3.4. Global Solutions for Nonnegative m0, n0

From (3) and (4) it follows that

u(x, t) + ux(x, t) = ex
∫

∞

x

e−ym(y, t) dy. (23)

Thus the nonnegativity of m(x, t), n(x, t) are ensures ux(x, t) ≥ −u(x, t) and
similarly vx(x, t) ≥ −v(x, t), preventing blowup in finite time, because the solu-
tion (u, v) is uniformly bounded as long as it exists.
Blowup however might be possible if m(x, 0), n(x, 0) take both positive and neg-
ative values.

4. Conclusions

In the presented study we analysed the behavior of the solutions of the CCCH sys-
tem when m,n are initially compactly supported and (i) initially u, v everywhere
nonpositive/nonnegative (ii) u = v̄. In both cases the result is that the compactness
property is lost immediately, i.e., for any time t > 0. Asymptotically the solutions
decay exponentially to zero, such that u + v decays to zero monotonically. The
exponential decay is already observed in the case of the peakon solutions, where
m,n are supported only at finite number of points.
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FOUR POINTS LINEARIZABLE LATTICE SCHEMES∗
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Abstract. We provide conditions for a lattice scheme defined on a four points
lattice to be linearizable by a point transformation. We apply the obtained
conditions to a symmetry preserving difference scheme for the Burgers po-
tential introduced by Dorodnitsyn and show that it is not linearizable.

1. Introduction

In a recent article [4] we extended to lattice equations the theorems introduced by
Bluman and Kumei [2] for proving the linearizability of nonlinear Partial Differen-
tial Equations (PDEs) (for a recent extended review see [1]) based on the analysis
of the symmetry properties of linear PDEs.
Here we extend the results of [4] to the case of a lattice scheme, i.e., when the
lattice is not a priory given but it is defined by an equation so as to be able to
perform a symmetry preserving discretization of a PDE.
In Section 2 we prove a theorem characterizing the symmetries of linear difference
schemes on four lattice points and in Section 3 we apply it to find conditions under
which a nonlinear difference scheme is linearizable. These conditions are then
applied to the symmetry preserving discretization of the Burgers potential.

2. Symmetries of Linear Schemes

In this Section we define a difference scheme and provide the symmetry conditions
under which such a scheme is linearizable. To do so in a definite way we limit
ourselves to the case when the equation and the lattice are defined on four points

∗Reprinted from J. Geom. Symmetry Phys. 31 (2013) 93–104.
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in the plane, i.e., we consider one scalar equation for a continuous function of two
(continuous) variables: um,n = u(xm,n, tm,n) defined on four lattice points.

Figure 1. The Z
2 square-lattice where the equation is defined.

2.1. The Difference Scheme

As we consider one scalar equation for a continuous function of two (continuous)
variables, a lattice will be a set of points Pi, lying in the plane R

2 and stretching
in all directions with, a priori, no boundaries. The points Pi in R

2 will be labeled
by two discrete labels Pm,n. The Cartesian coordinates of the point Pm,n will be
(xm,n, tm,n) with −∞ < m < ∞ , −∞ < n < ∞. The value of the dependent
variable in the point Pm,n will be denoted um,n ≡ u(xm,n, tm,n).
A difference scheme will be a set of b equations relating the values of {x, t, u} in
a finite number of points. We start with one ‘reference point’ Pm,n and define a
finite number of points Pm+i,n+j in the neighborhood of Pm,n. They must lie on
two different sets of curves, two of which will be intersecting in Pm,n. Thus, the
difference scheme will have the form

Ea

(

{xm+i,n+j , tm+i,n+j , um+i,n+j}
)

= 0, 1 ≤ a ≤ b

−i1 ≤ i ≤ i2, −j1 ≤ j ≤ j2, i1, i2, j1, j2 ∈ Z
≥0.

(1)

The situation is illustrated on Fig. 2 in the case of a 7 points lattice. Our convention
is that x increases as m grows, t increases as n grows (i.e., xm+1,n − xm,n ≡

h1 > 0, tm,n+1 − tm,n ≡ h2 > 0). The scheme on Fig. 2 could be used e.g. to
approximate a differential equation of third order in x, second in t.
The value of b, the maximum number of different equations we consider, depends
on the kind of problems we are considering. Starting from the reference point
Pm,n and a given number of neighboring points, it must be possible to calculate
the values of {x, t, u} in all points in a unique way. This requires a minimum of
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Figure 2. Points on a two dimensional lattice.

three equations to calculate the independent variables (x, t) in two directions and
the dependent variable u in all points. With one dependent variable in R

2, at most
we can set b = 5. Of the five equations in (1), four determine completely the lattice,
one the difference equation. If we choose b = 3 than two define the lattice and one
the difference equation and we are solving an initial value problem when both the
equation and the lattice are defined from given initial conditions. If a continuous
limit exists, (1) represent a PDE in two variables. The equations determining the
lattice will reduce to identities (like 0 = 0).
As an example of difference scheme, let us consider the simplest and most standard
lattice, namely a uniformly spaced orthogonal lattice and a difference equation
approximating the linear heat equation on this lattice. The five equations (1) in this
case are

xm+1,n − xm,n = h1, tm+1,n − tm,n = 0 (2)

xm,n+1 − xm,n = 0, tm,n+1 − tm,n = h2 (3)

um,n+1 − um,n

h2
=
um+1,n − 2um,n + um−1,n

(h1)2
(4)

where h1 and h2 are two constants.
This example is simple as the lattice equations can be solved explicitly to give

xm,n = h1m+ x0, tm,n = h2n+ t0. (5)

The usual choice is x0 = t0 = 0 , h1 = h2 = 1 and then x is simply identified
with m, t with n. The above example however suffices to bring out several points
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Figure 3. Four points in the case of the heat equation.

1. Four equations are needed to describe completely the lattice but in this case
there is a compatibility condition. In the whole generality two equations are
sufficient and provide the lattice starting from some initial conditions.

2. Four points are needed for equations of second order in x, first in t. Only
three figure in the lattice equation, namely Pm+1,n, Pm,n and Pm,n+1. To
get the fourth point, Pm−1,n, we shift m down by one unit the equations
(2-4).

3. An independence condition is needed to be able to solve for xm+1,n, tm+1,n,
xm,n+1, tm,n+1 and um,n+1.

We need the more complicated two index notation to describe arbitrary lattices and
to formulate the symmetry algorithm.

2.2. Symmetries of the Difference Scheme

We are interested in point transformations of the type

x̃ = Fλ(x, t, u), t̃ = Gλ(x, t, u), ũ = Hλ(x, t, u) (6)

where λ is a group parameter, such that when (x, t, u) satisfy the system (1) then
(x̃, t̃, ũ) satisfy the same system. The transformation acts on the entire space
(x, t, u), at least locally, i.e., in some neighborhood of the reference point Pm,n,
including all points Pm+i,n+j figuring in equation (1). That means that the same
functions F,G and H determine the transformation of all points. The transforma-
tions (6) are generated by the vector field

X̂ = ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u. (7)

The symmetry algebra of the system (1) is the Lie algebra of the local symmetry
group of local point transformations. An infinitesimal symmetry (7) is a symmetry
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of (1) if (1) is invariant under a transformation (6). To check it we must prolong
the action of the vector field X̂ from the reference point (xm,n, tm,n, um,n) to
all points figuring in the system (1). Since the transformations are given by the
same functions F,G and H at all points, the prolongation of the vector field (7) is
obtained simply by evaluating the functions ξ, τ and φ at the corresponding points.
In other words, we have

pr X̂ =
∑

m,n

[

ξ(xm,n, tm,n, um,n)∂xm,n

+ τ(xm,n, tm,n, um,n)∂tm,n
+ φ(xm,n, tm,n, um,n)∂um,n

]

(8)

where the summation is over all points figuring in the system (1). The invariance
requirement is formulated in terms of the prolonged vector field as

prX̂ Ea |Ec=0 = 0, 1 ≤ a, c ≤ b. (9)

Just as in the case of PDE’s [6], we can turn equation (9) into an algorithm for
determining the symmetries, i.e., finding the coefficients in vector field (7) [5].

2.3. Symmetries of a Linear Partial Difference Scheme

To be able to linearize a difference scheme using the knowledge of its symmetries
we must be able to characterize the symmetries of a linear scheme. To do so in
this subsection we prove a theorem on the structure of the symmetries of a linear
partial difference scheme.

Theorem 1. Necessary and sufficient conditions for the three difference equa-
tions Em,n = 0, Fm,n = 0 and Gm,n = 0 defined on four points {(m,n), (m +
1, n), (m,n+ 1), (m+ 1, n+ 1)} for a scalar function um,n(xm,n, tm,n) and the
lattice variables xm,n and tm,n to be linear is that they are invariant with respect
to the following infinitesimal generator

X̂m,n = vm,n∂um,n
+ χm,n∂xm,n

+ ηm,n∂tm,n
(10)

where the discrete functions vm,n, χm,n, ηm,n satisfy three linear equations, i.e.,
vm+1,n+1 = em,n, χm+1,n+1 = fm,n and τm+1,n+1 = gm,n. The functions e, f and
g depend just on the functions (vm,n, χm,n, ηm,n) in the points (m,n), (m+ 1, n)
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and (m,n+ 1) and are given by

e0,0 = a1v0,0 + a2v0,1 + a3v1,0 + a4χ0,0 + a5χ0,1 + a6χ1,0 + a7η0,0

+ a8η0,1 + a9η1,0

f0,0 = b1v0,0 + b2v0,1 + b3v1,0 + b4χ0,0 + b5χ0,1 + b6χ1,0 + b7η0,0

+ b8η0,1 + b9η1,0

g0,0 = c1v0,0 + c2v0,1 + c3v1,0 + c4χ0,0 + c5χ0,1 + c6χ1,0 + c7η0,0

+ c8η0,1 + c9η1,0

(11)

where a1, . . ., c9 depend only on the lattice indices and where, here and in the
following, for the sake of simplicity we set in any discrete variable on the square
zm+i,n+j = zi,j . The linear equations Em,n = 0, Fm,n = 0 and Gm,n = 0 have
the form

u1,1 = a1u0,0 + a2u0,1 + a3u1,0 + a4x0,0 + a5x0,1 + a6x1,0 + a7t0,0

+ a8t0,1 + a9t1,0

x1,1 = b1u0,0 + b2u0,1 + b3u1,0 + b4x0,0 + b5x0,1 + b6x1,0 + b7t0,0

+ b8t0,1 + b9t1,0

t1,1 = c1u0,0 + c2u0,1 + c3u1,0 + c4x0,0 + c5x0,1 + c6x1,0 + c7t0,0

+ c8t0,1 + c9t1,0.

(12)

Proof: To prove this Theorem we require that a generic P∆E Fm,n = 0, depending
on a scalar function um,n(xm,n, tm,n) and the lattice variables xm,n and tm,n in the
four points {(m,n), (m+1, n), (m,n+1), (m+1, n+1)}, i.e., 12 variables, be
invariant under the prolongation of (10), as given by (8). The invariance condition
(9), when ξm,n(x, t, u) = χm,n, τm,n(x, t, u) = ηm,n and φm,n(x, t, u) = vm,n

implies that Fm,n should depend on a set of 11 independent invariants of vm,n,
χm,n and ηm,n

L1 = v0,0u0,1 − v0,1u0,0, L2 = v0,0u1,0 − v1,0u0,0

L3 = v0,0u1,1 − e0,0u0,0, L4 = v0,0x0,1 − χ0,1u0,0

L5 = v0,0x1,0 − χ1,0u0,0, L6 = v0,0x1,1 − f0,0u0,0

L7 = v0,0t0,1 − η0,1u0,0, L8 = v0,0t1,0 − η1,0u0,0

L9 = v0,0t1,1 − g0,0u0,0, L10 = v0,0x0,0 − χ0,0u0,0

L11 = v0,0t0,0 − η0,0u0,0.

(13)

As Fm,n should not depend on the functions (vm,n, χm,n, ηm,n) in the points
(m,n), (m+1, n) and (m,n+1) we have nine constraints given by the equations
∂Fm,n/∂vm+i,n+j = 0, ∂Fm,n/∂χm+i,n+j = 0 and ∂Fm,n/∂taum+i,n+j = 0
with (i, j) = (0, 0), (0, 1), (1, 0). These are first order partial differential equa-
tions for the function Fm,n with respect to the 11 invariants which we can solve on
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the characteristics to define three invariants

K1 = v0,0{u1,1 − [e0,0,v0,1u0,1 + e0,0,v1,0u1,0 + e0,0,χ0,0
x0,0 + e0,0,χ0,1

x0,1

+e0,0,χ1,0
x1,0 + e0,0,η0,0t0,0 + e0,0,η0,1t0,1 + e0,0,η1,0t1,0]} − u0,0{e0,0

−[e0,0,v0,1v0,1 + e0,0,v1,0v1,0 + e0,0,χ0,0
χ0,0 + e0,0,χ0,1

χ0,1 + e0,0,χ1,0
χ1,0

+e0,0,η0,0η0,0 + e0,0,η0,1η0,1 + e0,0,η1,0η1,0]}

K2 = v0,0{u1,1 − [f0,0,v0,1u0,1 + f0,0,v1,0u1,0 + f0,0,χ0,0
x0,0

+f0,0,χ1,0
x1,0 + f0,0,η0,0t0,0 + f0,0,η0,1t0,1 + f0,0,η1,0t1,0]} − u0,0{f0,0

(14)
−[f0,0,v0,1v0,1 + f0,0,v1,0v1,0 + f0,0,χ0,0

χ0,0 + f0,0,χ0,1
χ0,1

+f0,0,χ1,0
χ1,0 + f0,0,η0,0η0,0 + f0,0,η0,1η0,1 + f0,0,η1,0η1,0]}

K3 = v0,0{u1,1 − [g0,0,v0,1u0,1 + g0,0,v1,0u1,0 + g0,0,χ0,0
x0,0 + g0,0,χ0,1

x0,1

+g0,0,χ1,0
x1,0 + g0,0,η0,0t0,0 + g0,0,η0,1t0,1 + g0,0,η1,0t1,0]} − u0,0{g0,0

−[g0,0,v0,1v0,1 + g0,0,v1,0v1,0 + g0,0,χ0,0
χ0,0 + g0,0,χ0,1

χ0,1

+g0,0,χ1,0
χ1,0 + g0,0,η0,0η0,0 + g0,0,η0,1η0,1 + g0,0,η1,0η1,0]}.

By construction the three invariants Ki, i = 1, 2, 3 are independent and the three
equations Em,n = 0, Fm,n = 0 and Gm,n = 0 must be defined in terms of them.
The three invariants K3, L3 and M3 still depend on the functions (vm,n, χm,n,
ηm,n) in the points (m,n), (m + 1, n) and (m,n + 1) while they should depend
just on the variables (um,n, xm,n, tm,n) in the points (m,n), (m+1, n), (m,n+1)
and (m + 1, n + 1). The derivatives Fm,n,Ki

, i = 1, 2, 3 will satisfy a set of nine
linear equations whose coefficients will form a matrix A 9x3. The matrix A can
have rank 3, 2 or 1. In the case of rank 3 we have Fm,n,Ki

= 0, i = 1, 2, 3,
i.e., the function Fm,n does not depend on the 3 invariants. If the rank of A is 2
or 1 we can have at most two independent invariants. If we want to have three
invariants we need to require that the coefficients of the matrix A be zero, i.e.,
defining α1 = v0,0, α2 = v0,1, α3 = v1,0, . . ., α9 = η1,0 we have ∂Kp

∂αq
= 0 p =

1, 2, 3, q = 1, . . . , 9. The equations ∂Kp

∂αq
= 0 are linear homogeneous expressions

in the veriables ui,j , xi,j and ti,j with coefficients depending on vi,j , χi,j and ηi,j ,
for appropriate values of i and j. Consequently (12). Than ∂Kp

∂αq
= 0 turn out

to be a set of 159 overdetermined partial differential equations for the functions
em,n, fm,n and gm,n whose solution (11) is obtained using Maple. It depends on 27
integration constants which must be set equal zero if (12) does not depend on vi,j ,
χi,j and ηi,j .

A few remarks can be derived from Theorem 1 and must be stressed.
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Remark 1. The equation for um,n and those for the lattice variables xm,n and
tm,n are independent, however the functions appearing in the symmetry (10) do
not satisfy equations independent from those satisfied by the lattice scheme. In fact
these symmetries correspond to independent superposition laws for the equation
and the lattice.

Remark 2. If the linear equation for um,n is autonomous than the coefficients
{a4, . . . , a9} are zero. The variable vm,n will satisfy a similar equation but the
lattice equations can depend linearly on um,n.

Remark 3. The proof of Theorem 1 does not depends on the position of the four
lattice points considered, i.e., {(m,n), (m+1, n), (m,n+1), (m+1, n+1)}. The
same result is also valid if the four points are put on the triangle shown in Fig. 3,
i.e., {(m,n), (m+ 1, n), (m− 1, n), (m,n+ 1)}.

3. Linearizable Nonlinear Schemes

In this article each equation of a difference scheme is an equation for the contin-
uous variable um,n, xm,n and tm,n. If the equations for the lattice variables, xm,n

and tm,n, are solvable we get

xm,n = X (m,n, c0, c1, . . .), tm,n = T (m,n, d0, d1, . . .) (15)

and then the remaining equation for the variable um,n depends explicitly on n and
m, on the integration constants contained in (15) and turns out to be an algebraic,
maybe transcendental, equation of um,n in the various lattice points involved in
the equation. So the difference scheme reduce to a non autonomous equation on a
fixed lattice and for its linearization we can apply the results of [4].

If the equations for the lattice are not solvable the difference scheme can be thought
as a system of coupled equations for the variables um,n, xm,n and tm,n on a fixed
lattice. In this way we can apply to the equations of the scheme the results of [4]
and, taking into account the results of the previous section, we can propose the
following linearizability theorem

Theorem 2. A nonlinear difference scheme (1) involving i1+ i2 different points in
them index and j1+j2 in the n index for a scalar function um,n of a 2–dimensional
space of coordinates xm,n and tm,n will be linearizable by a point transformation

wm,n(ym,n, zm,n) = f(xm,n, tm,n, um,n)

ym,n = g(xm,n, tm,n, um,n), zm,n = k(xm,n, tm,n, um,n)
(16)
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to a linear difference scheme of the kind of (12) for wm,n, ym,n and zm,n if it
possesses a symmetry generator

X̂ = ξ(x, t, u)∂x + φ(x, t, u)∂t + ψ(x, t, u)∂u

ξ(x, u) = α(x, t, u)y, φ(x, t, u) = β(x, t, u)z, ψ(x, t, u) = γ(x, t, u)w
(17)

with α, β and γ given functions of their arguments and y, z and w an arbitrary
solution of (11).

In the following we will consider the application of this theorem to a difference
scheme which one would hope that it is linearizable as is a symmetry preserving
discretization of a linearizable PDE, the Burgers potential equation [6].

3.1. Application

We consider here the discretization of the Burgers potential presented by Dorod-
nitsyn et al [3] and show that, even if it is reducible by a point transformation to the
discrete scheme of the heat equation, it is not linearizable by a point transforma-
tion. As a consequence we have also that the symmetry preserving discretization of
the heat equation presented by Dorodnitsyn et al is not a linear difference scheme.
The symmetry preserving discretization of the Burgers potential is given by the
following scheme

∆x

τ
=

1

h+ + h−

[h−

h+
(w+ − w) +

h+

h−
(w − w−)

]

(18)

eŵ−w−
∆
2
x

2τ = 1 +
2τ

(h+)2

[w+ − w

h+
−
w − w−

h−

]

(19)

τ = tm,n+1 − tm,n, tm+1,n = tm−1,n = tm,n = t (20)

where τ is a constant and

w = wm,n(xm,n, tm,n), ŵ = wm,n+1, w− = wm−1,n, w+ = wm+1,n

∆x = xm,n+1 − xm,n, h+ = xm+1,n − xm,n, h− = xm,n − xm−1,n.

Equations (18), (19) are written in terms of the discrete invariants I2, I3, I4 on the
stencil defined in terms of (τ, x, ∆x, h+, h−, w, ŵ, w+, w−) of the finite point
symmetries of continuous Burgers potential equation

wt = wxx −
1

2
w2
x (21)

X̂1 = ∂t, X̂2 = ∂x, X̂3 = t∂x + x∂t, X̂4 = 2t∂t + x∂x

X̂5 = ∂w, X̂6 = t2∂t + tx∂x +
(1

2
x2 + t

)

∂w
(22)
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I1 =
H+

h−
, I2 =

τ1/2

h+
e

1

2
(w−ŵ)+∆

2
x

4τ

I3 =
1

4

h+2

τ
+

h+2

h+ + h−

[w+ − w

h+
−
w − w−

h−

]

(23)

I4 = ∆x
h+

τ
−

2h+

h+ + h−

[h−

h+
(w+ − w) +

h−

h+
(w − w−)

]

and goes into it in the continuous limit.
Equations (18, 19) are related to a symmetry preserving discretization of the heat
equation for um,n by the point transformation wm,n = −2 log(um,n). However it
is not completely obvious if (18, 19) are reducible to a linear discrete equation, i.e.,
if it possess, as its continuous counterpart (21), an infinite dimensional symmetry
X̂ = u(x, t)e−w∂w with u(x, t) solution of the linear heat equation ut = uxx.
We can apply on the lattice scheme (18, 19, 20) the symmetry generator

X̂ = ψ(x, t, w)u∂w + φ(x, t, w)s∂t + ξ(x, t, w)y∂x (24)

with (x, t, w) satisfying (18, 19, 20) while (y, s, u) are solutions of the linear
scheme prescribed by Theorem 1

um,n+1 = a1um,n + a2um−1,n + a3um+1,n + a4ym,n + a5ym−1,n + a6ym+1,n

+a7sm,n + a8sm−1,n + a9sm+1,n

ym,n+1 = c1um,n + c2um−1,n + c3um+1,n + c4ym,n + c5ym−1,n + c6ym+1,n

+c7sm,n + c8sm−1,n + c9sm+1,n (25)

sm,n+1 = b1um,n + b2um−1,n + b3um+1,n + b4ym,n + b5ym−1,n + b6ym+1,n

+b7sm,n + b8sm−1,n + b9sm+1,n

where (aj , bj , cj , j = 1, . . . , 9) are parameters at most depending on n and m. By
a long and tedious calculation carried out using a symbolic calculation program we
get that

ψ(x, t, w) = ψ0(t) + ψ1(t)x+ ψ2(t)x
2

φ(x, t, w) = φ0(t) + φ1(t)x+ φ2(t)x
2 (26)

ξ(x, t, w) = ξ0(t) + ξ1(t)x.

Introducing (26) into the determining equations for the symmetries of the discrete
Burgers potential scheme (18, 19, 20) we get 1672 equations for the functions
(ψj(t), φj(t), ξj(t), j = 0, 1, 2) depending on the coefficients (aj , bj , cj , j =
1, . . . , 9). 168 of those equations do not depend on the coefficients (aj , bj , cj ,
j = 1, . . . , 9) and on (ψj(t + τ), φj(t + τ), ξj(t + τ), j = 0, 1, 2) and can be
solved imposing that τ 6= 0 we get ψj(t) = 0 for j = 0, 1, 2, φk = 0 for k = 1, 2
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and ξk = 0 for k = 0, 1. Introducing this result in the remaining 1508 equations,
we get the following 9 equations

b1φ0(t+ τ) = b2φ0(t+ τ) = b3φ0(t+ τ) = b4φ0(t+ τ) = b5φ0(t+ τ)

= b6φ0(t+ τ) = φ0(t)− b7φ0(t+ τ) = b8φ0(t+ τ) = b9φ0(t+ τ) = 0.

If we require φ0(t) be not identically null, the coefficients bj , j = 1, . . . 6, 8, 9
must be all zero and b7 6= 0. As a consequence φ0(t) = b−n

7 φ̄, with φ̄ an arbitrary
constant. In this case we have a symmetry generator X̂ = b−m

7 s∂t which is a
consequence of the linearity of (20). So we can conclude that the Burgers potential
scheme (18, 19) is not linearizable and that the corresponding discretization of
the heat equation [3] is not given by a linear scheme. The linearity of the lattice
equation for tm,n (20) is confirmed by the presence of the symmetry X̂ = b−n

7 s∂t.
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Abstract. Completely integrable systems always admit more alternative Hamil-
tonian descriptions. The geometrical formulation of quantum systems shows
that similar conclusions hold true also for quantum systems. In addition, the
description of quantum systems on Hilbert manifolds, e.g., the complex pro-
jective space, shows that not only quantum systems admit alternative Hamil-
tonian descriptions, they also admit alternative linear descriptions.

1. Introduction

In his Lectures on Dynamics [7], Jacobi starts with the problem of integrating the
differential equations of motion. He explicitly says: In Mécanique Analytique one
finds everything related to the problem of setting up and transforming the differen-
tial equations, but very little on their integration.
He goes on to elaborate what we nowdays call the Hamilton-Jacobi theory and
elaborates on constants of the motion and symmetries.
The aim of our paper is to present a more general point of view in which the
Hamilton-Jacobi theory is only an instance of the general procedure of integrating
a system by reducing it to a normal form. In this respect we follow the view
point of Birkhoff, all dynamical systems in the same orbit of the diffeomorphism

∗Reprinted from J. Geom. Symmetry Phys. 31 (2013) 105–117.
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group enjoy the same properties, therefore to study the integration problem one
may select a particular representative of the equivalence class and consider it as a
“normal form”.
In this picture, the Hamilton-Jacobi procedure becomes a way to reduce a given
Hamiltonian system to a normal form by replacing the full diffeomorphism group
with the subgroup of canonical transformation necessary to achieve the transition
to the normal form, the particular trnsformation is found by means of a generat-
ing function, solution of the Hamilton-Jacobi equation associated with the starting
Hamiltonian functions, the comparison Hamiltonian and the one we want to tran-
form.
By using the well known fact that Quantum Mechanics can be treated as a Hamil-
tonian system (on an infinite or finite dimensional manifold as the case may be),
we maintain that most of our arguments apply both to Classical and Quantum Me-
chanics.
For Quantum Mechanics we should bear in mind that the carrier space (space of
pure states) is the complex projective space PH associated to the Hilbert space
H. In this framework, the geometric structures pertinent to the standard treatment
are a Riemannian structure, a Poisson structure and a complex structure. A com-
patibility condition among them qualifies the carrier space as a Kähler manifold.
In this respect, i.e., from the point of view of geometric structures, quantum me-
chanics requires additional structures with respect to the symplectic structure of
Hamiltonian classical dynamics. Of course the most difficult aspects of quantum
mechanics have to do with the infinite dimensionality of the carrier space and the
fact that infinite dimensional differential geometry is much less advanced than the
finite dimensional one. The most serious problem in the generic infinite dimen-
sional situation is that unbounded operators are not continuous, therefore all our
assumptions about differentiability cannot be applied without further qualifications
which should be made case-by-case.
Nevertheless, the structural aspects, what we may call synthetic as opposed to an-
alytics will be essentially the same.
To avoid technicalities we shall mainly restrict to finite dimensional carrier spaces.
To exhibit the variety of aspects emerging from the view point of Birkhoff we pri-
marily deal with linear systems, the evolution associated with a differential equa-
tion will be our main concern, additional geometric structures on the carrier space
will not be postulated at a “kinematical level” but derived by solving equations
defined by the dynamics we start with.
By using symmetries and constants of the motion it is possible to derive nonlinear
systems as reduction of linear ones. Of course, most of the properties valid for the
linear situation will be inherited by the nonlinear one when they are compatible
with the reduction procedure.
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Many aspects will be illustrated by means of examples instead of formulating and
proving general theorems. A more extensive treatment of these issues can be found
in [4] and references therein.

Organization of the paper is as follows:

• The Geometrical Formulation of Quantum Mechanics
• Linear Systems on Vector Spaces (invariant structures: Poisson, symplectic,

Lagrangian)
• Bihamiltonian Systems
• From linear to nonlinear (what happens of the superposition rule, Riccati

equation on PH).

2. Geometrical Formulation of Quantum Mechanics

The observation that quantum theory could be described in the language of sym-
plectic mechanics may be traced back in the work of Segal and Mackey [8, 11].
More recently, several authors have been investigating the further developments of
geometrical quantum mechanics, in doing so this methodology has unveiled new
aspects and insights into the workings of the quantum world the way we understand
it now, see [4] and references therein.

One particular aspect which may be connected with the existence of nonlinear
transformations connecting linear descriptions seem to us worth of notice.

Let us start by reviewing very briefly how quantum mechanics is usually formu-
lated.

With any physical system we associate a complex Hilbert space H, the choice of
a linear carrier space and a linear equation of motion is usually motivated [3] by
the need to incorporate interference. The probabilistic interpretation of quantum
mechanics requires the restriction to norm-one-vectors; to preserve the probability
one usually restricts the evolution to be unitary, the differential equation of motion
will then be associated with a skew-Hermitian “infinitesimal generator”, written as
iH with H Hermitian operator. Observables are identified with Hermitian opera-
tors which are usually thought of as the real elements of theC∗-algebra of bounded
operators acting on H.

If we use Dirac’s bra and ket notation, we find that pure physical states are asso-
ciated with rank-one projectors, this association depends on the specific Hermitian
product we are using

ρψ =
|ψ〉〈ψ|

〈ψ|ψ〉
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From the Schrödinger differential equation

d|ψ〉

dt
=
H

i~
|ψ〉

one derives the equation of motion for rank-one projectors

dρψ
dt

=
1

i~
[H, ρψ] .

Using the linearity of the equation, it is possible to extend this equation to convex
linear combinations

ρ =
∑

j

pjρψj

with pj ≥ 0,
∑

j pj = 1, to get the equation of motion on density states

dρ

dt
=

1

i~
[H, ρ] .

If we use also complex linear combinations we arrive at equations of motion for
generic operators

dA

dt
=

1

i~
[H,A]

which represent equations of motion in the Heisenberg picture.
It is now clear that the dynamics on the complex projective space ceases to be
linear, the sum of two rank-one projectors is no more a rank-one projector.
To remedy this situation, after all interference phenomena should be treated also
on this nonlinear space, we have to write down a composition law for pure states
which is inner, out of two pure states gives another pure state.
Such a composition law may be given the following form [4, 9], out of %1 and ρ2
we get

ρ = |c1|
2 ρ1 + |c2|

2 ρ2 + c1c
∗

2

ρ1ρoρ1
√

Tr (ρ1ρoρ2ρ0)
+ h.c.

with the understanding that
∣

∣c21
∣

∣ and
∣

∣c22
∣

∣ are required to satisfy ρ2 = ρ, Tr ρ = 1.
The reason we have inserted this composition law by means of fiducial state ρ0
is due to the circumstance that, when written in homogeneous coordinates for the
complex projective space, Schrödinger equation becomes a Riccati-type equation
and the given composition is exactly the one we would get by composing solu-
tions by means of the “harmonic ratio” [2]. To illustrate how Riccati equation
emerges from Schrï£¡dinger equation on the space of state vectors, we consider the
two-dimensional case, H = C

2. Let us introduce an orthonormal basis |e1〉, |e2〉,
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〈ej |ek〉 = δjk, and define associated coordinates, by setting z1 (ψ) = 〈e1|ψ〉,
z2 (ψ) = 〈e2|ψ〉. In this basis we write Schrödinger equation as

d

dt

∣

∣

∣

∣

z1
z2

∣

∣

∣

∣

=
H

i~

∣

∣

∣

∣

z1
z2

∣

∣

∣

∣

whith H being the Hermitian matrix
∣

∣

∣

∣

h11 h12
h21 h22

∣

∣

∣

∣

.

In this way we find

ż1 =
1

i~
(h11z1 + h12z2) , ż2 =

1

i~
(h21z1 + h22z2)

along the corresponding complex conjugate equations for z̄1, z̄2.
We introduce homogeneous coordinates to implement the probabilistic interpreta-
tion, according to which the physical state is associated with the ray defined by

λ

∣

∣

∣

∣

z1
z2

∣

∣

∣

∣

with λ any complex number different from zero, we have ξ = z1/z2 and

obtain
dξ

dt
=
h21
i~

+
h22 − h11

i~
ξ −

h12
i~
ξ2.

This Riccati equation has composition law

ξ (t)− ξ1 (t)

ξ (t)− ξ2 (t)
= k

ξ1 (t)− ξ3 (t)

ξ2 (t)− ξ3 (t)

in terms of solutions ξ1 (t) , ξ2 (t) , ξ3 (t) and initial conditions determining k. This
composition law says we can still describe interference phenomena even though the
equation of motion is not linear. Perhaps, we should also remark that the lack of
completeness of the vector field representing the evolution, equation of motion, is
an artifact of the coordinates we have introduced to describe the space of pure states
S2. The actual dynamics is associated with a one-parameter group of transforma-
tions preserving the Kähler structure on the complex projective space CP

1 ≡ S2.
Schrödinger equation on H = C

n may be written in a similar form

dψ

dt
=
H

i~
ψ =

∣

∣

∣

∣

H1 V

V
†

H2

∣

∣

∣

∣

ψ.

Separating the upper n − 1 components of ψ denoted by ξ from the n−th one η

i.e., ψ =

∣

∣

∣

∣

ξ
η

∣

∣

∣

∣

, Schrödinger equation may be written as

dξ

dt
= H1ξ + V η

dη

dt
= V †ξ +H2η.
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If we now set z = ξ/η, in analogy with the two-dimensional case, we get

ż = V +H1z − zH2 − zV †z.

This is again a Riccati-type equation, but now z ia an (n− 1)−component vector,
as is V , while H2 is a single real variable.
As the carrier space is no more linear, we cannot consider operators anymore, thus
we shall replace them with expectation value functions

eA ([ψ]) =
〈ψ |Aψ〉

〈ψ |ψ〉
= Tr ρψA.

When the operator A is hermitian these expectation value functions are called
Kälherian functions. They are completely characterized by the property that the
Hamiltonian vector fields associated with them are also Killing vector fields. Here
the Poisson structure and the Riemannian tensors are those arising from projecting
the imaginary and the real part of the Hermitian tensor from the complex Hilbert
space to the space of rays, or complex projective space, when expressed in con-
travariant form.
In summary, the standard formulation of quantum mechanics, when written in
terms of pure states gives rise to a geometrical formulation on the manifold of rays,
the complex projective space. Equations of motion are described by a Hamiltonian
vector field which is also a Killing vector field preserving the complex structure.
In conclusion the equations of motion of a quantum system are represented by a
vector field Γ on a Hilbert manifold M , for physical motivations connected with
the probabilistic interpretation, the vector field is required to be Hamiltonian and
Killing

3. Classical Dynamics

In principle it would be possible to formulate also classical dynamics on the Hilbert
space of square integrable functions on phase space with the Liouville measure
associated with the symplectic volume ωn. Now, infinitesimal generators of the
evolution may be arbitrary differential operators of arbitrary order (indeed, they
could even be pseudo-differential operators). The non local character of quantum
mechanics is encoded in the non local product of expectation-value functions and
the corresponding derivations associated with higher order differential operators.
In classical mechanics, described on phase space, we may write the equations of
motion in the form

i
∂f (q, p, t)

∂t
= Ĥf (q, p, t)
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with Ĥ the Liouville operator

Ĥ = −i
∂H

∂p

∂

∂q
+ i

∂H

∂q

∂

∂p

and H is the Hamiltonian function. In general, to restrict the equation to states,
we replace f (p, q) with ρ (p, q) which is a probability density on phase space. It
is possible to introduce the Hilbert space of square integrable functions on phase
space with respect to the Liouville measure ωn, ω being the symplectic structure.
the Liouville probability density may now be written as ρ (p, q) = ψ∗ (p, q)ψ (p, q) .
It should be stressed that in this picture the operators q̂ and p̂ commute differently
than in quantum mechanics. all operators are first order operators while are deriva-
tions for the standard point-wise product and therefore their exponentiations will
be one-parameter groups of automorphisms of the local point-wise product. The
motivation for introducing this Hilbert space point of view for classical mechanics
was to study the ergodicity issues and the understanding of Lyapunov exponents.
This was attempted by Koopman [6].
In this picture, the one-parameter group of transformations is an automorphism
group of the point wise product on functions, i.e., of the local product.
In the quantum case, the one-parameter group of “unitary transformations” on the
complex projective space does not generate automorphisms of the point wise prod-
uct of Kälherian functions but of the non local product corresponding to the oper-
ator product, namely

eA ? eB ([ψ]) = Tr ρψA ·B = eAB ([ψ]) .

It should be remarked, however, that the requirement of irreducibility of the repre-
sentation for the canonical commutation relations requires that quantum mechanics
be formulated on the space of square integrable functions on a Lagrangian subman-
ifold of the phase space of the classical system.
In any case, our considerations allow us to say that a classical dynamical system
is represented by a vector field Γ on a carrier space M endowed with a symplectic
structure ω such that iΓω = −dH . Thus, unlike for quantum case, the vector field
describing the dynamics is Hamiltonian but is not required to be a Killing vector
field.
Now, we can consider the problem of integrating a dynamical vector field Γ on a
manifold M .
As Birkhoff [1] pointed out, all dynamical systems in the orbit of Diff(M) passing
through Γ will share the same properties of Γ, therefore we might study a partic-
ularly relevant representative of the equivalence class to unveil the properties of
each one of them in the orbit, what would be called a “normal form”.
To be concrete, we shall carry on this analysis in the simple case of linear systems.
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4. Linear Structures and Linear Vector Fields

Our starting point is a pair (Γ,M), a vector field Γ representing the dynamics and
a carrier manifold M , thought of as a space of states.
A linear structure on M is characterized by a vector field ∆ having the following
properties:

1. There exists one and only one point, a critical point for ∆, such that ∆(m0)=0

2. The eigenvalue problem

L∆h = 0.h

has only trivial solutions on each connected component of M
3. The eigenvalue problem

L∆f = f

has as many functionally independent solutions (f1, f2, ..., fn) as the di-
mension of the carrier space M

4. ∆ is a complete vector field on M .

Such a vector field ∆ is also called a dilation vector field.

Proposition 1. A connected manifoldM , possessing a dilation vector field ∆, may
be endowed with a vector space structure.

The statement follows by selecting a family of independent solutions for the eigen-
value equation

L∆f = f

say (f1, f2, ..., fn) with fiεF(M). We may define a composition law on points of
M by setting

(λ1m1 + λ2m2) (f) = λ1f (m1) + λ2f (m2) , m1,m2 ∈M

where f belongs to the linear span of (f1, f2, ..., fn) . Notice that (λ ·m) (f) =
λ · f (m) gives again a point in M because of the completeness assumption on ∆.
By using (f1, f2, ..., fn) as a coordinate system for the whole of M , we have that
dfj (∆) = fj implies fj (m0) = 0 and ∆ = fj∂/∂fj .

Thus the point m0 is the null vector of the vector space structure on M . It is now
clear that any other vector field in the orbit Diff(M) passing through ∆ will give
rise to another linear structure.
The subgroup of diffeomorphisms preserving ∆ will be the group of linear trans-
formations, GL (M,∆), which is isomorphic to GL (n,R) therefore alternate lin-
ear structures are parametrized by Diff (M) /GL (M,∆) .

Having defined a linear structure, it is possible to define linear vector fields

Definition 2. A vector field Γ is linear with respect to ∆ if [Γ,∆] = 0.
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Proposition 3. Any linear vector field Γ is represented by a class of matrices defin-
ing an orbit of GL (n,R).

Proof: Consider a particular independent set of solutionsL∆fj = fj , j = 1, 2, ..., n.
We have

LΓL∆fj = LΓfj = γkj fk, γkj ∈ R.

If we choose a different basis of solutions, we associate a different matrix to Γ,
all of them will be related by the matrix

∣

∣

∣

∣T ik
∣

∣

∣

∣ taking from one basis to another,
therefore they are elements in the orbit TγT−1 with T ∈ GL (n,R) . The vector
field Γ may be represented as a linear homogeneous differential operator

Γ = fkγ
k
j

∂

∂fj
·

The equation of motion associated with Γ are written, in the selected basis,
dh

dt
= fkγ

k
j

∂h

∂fj
·

In finite dimensions, a solution is provided by the exponentiation of the represen-
tative matrix γ, i.e.,

~x (t) = etγ~x (0) .

�

Even though for each initial condition we have found the solution, it is clear that
many questions like conservation, stability, periodic orbits and many others cannot
be easily answered from the given form.
As matter of fact more can be said if we reduce γ to some normal form. For
instance, we may use Schur decomposition to write γ = N+S, withN a nilpotent
matrix and S semisimple, [N,S] = 0.

The commutativity property gives rise to the “composition of independent mo-
tions”

etN · etS = et(N+S).

AsN is nilpotent, etN reduces to a polynomial in t, of degree equal one-less nilpo-
tency index.
We may derive in general that the commutant of γ, say [γ]′, the algebra of matrices
commuting with γ contains all powers of γ and is Abelian if all eigenvalues are
not degenerate. If γ admits degenerate eigenvalues, the algebra of symmetries will
not be Abelian.
An interesting question from our point of view is the existence of constants of
motion.
From our experience coming from Hamiltonian formalism, where there is a con-
nection between symmetries and constants of the motion, we could investigate the
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possibility that our dynamical vector field preserves quadratic forms or bilinear
maps.
In geometrical languages solutions of the equation LΓT = 0 would give all invari-
ant tensor field T .
Of particular relevance are tensor fields of rank two, perhaps decomposed into
symmetric and skewsymmetric ones.
For instance Γ = Λ (dH), i.e., the existence of an Hamiltonian description in
terms of Poisson tensor Λ and the quadratic hamiltonian H , when written in terms
of matrices, would give γ = ΛH , where Λ and H are the representative matrices
for the Poisson tensor and the Hamiltonian function respectively. We would have

Λ = Λjk
∂

∂fj
∧

∂

∂fk
, H =

1

2
Hjkfjfk

so that at matrix level γkj = ΛjmH
mk.

Thus, the existence of Hamiltonian descriptions for the linearizable vector field
Γ amounts to the decomposition of the representative matrix as the product of a
skew-symmetric times a symmetric matrix.
For the generic case we can immediately give a necessary and sufficient condition
for such a decomposition.

Proposition 4. If γ has minimal degeneracy, a necessary and sufficient condition
for the decomposition γ = Λ ·H , is that all odd powers of γ are traceless.

Proof: In one direction the choice is obvious because Tr γ = Tr γ† and (Λ ·H)† =
−H · Λ. The general proof may be found in [5]. �

What is relevant for our considerations is the part that all matrices in the orbit

TγT−1 = γ
(

TΛT †

)(

T †

)−1
HT−1 =

(

TΛT †

)

(

T−1
)†
HT−1

have also the same property, i.e., they are Hamiltonian, factorizable with respect to
different Poisson structures and different Hamiltonians.
Of course, of particular significance is the family of transformations for which
TγT−1 = γ,

(

TΛT †
)

6= Λ, i.e., symmetries for γ which are not canonical.
These particular symmetries will carry one Hamiltonian description into an alter-
native one. We find that Hamiltonian systems admitting symmetries which are not
canonical will always be bi-Hamiltonian.
From our considerations it should be clear that there are linear systems with a large
group of symmetries which may admit no constants of the motion.
For instance this is the case for the dilation vector field ∆ itself. The equa-
tion L∆h = 0 admits only trivial solutions while the symmetry group is the full
GL (n,R) .
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A generic linear Hamiltonian system will have all powers γk as symmetries but
only the odd powers γ2k+1 will generate canonical symmetries. Thus, any linear
Hamiltonian system always admits alternative Hamiltonian descriptions.
However, this way of generating alternative Hamiltonian descriptions will not ex-
haust the family of alternative ones. For instance the two-dimensional isotropic
Harmonic Oscillator has different decompositions with H positive definite (the
standard one) or with signature (+ +−−) which arises from

Λ =
∂

∂q1
∧

∂

∂p1
−

∂

∂q2
∧

∂

∂p2
, H =

1

2

(

p21 + q21 − p22 − q22
)

.

Obviously this factorization cannot be related to the standard one by similarity
transformation.

Remark 5. When the Poisson tensor is not degenerate, we can invert it and define
a symplectic structure. When this symplectic structure is exact, we can consider a
symplectic potential and use it to define a cotangent bundle structure on M. From
the Hamiltonian, if transversal to fibers, with a nondegenerate Hessian, we can go
to the Lagrangian description. It is therefore clear that the chain of steps Poisson-
Symplectic-Lagrangian puts more and more restrictions on the dynamical vector
field we are considering, and correspondingly on the transformation group we may
use to find “normal forms”.

A final comment is in order when the orbits of our dynamical evolution are all
bounded. Going back to the decomposition of γ = N + S, it is clear that for
bounded orbits N must be zero and S should admit only purely imaginary eigen-
values if they are not vanishing.
Thus, not vanishing purely imaginary eigenvalues require M to have even dimen-
sion. As a matter of fact, in this situation, M maybe endowed with a complex
structure so that it becomes isomorphic with C

n, Λ will represent the imaginary
part of an Hermitian structure and in all we can prove the following proposition.

Proposition 6. A complex linear vector field Γ generates a flow φt : C
n → C

n

preserving same Hermitian scalar product h, i.e., φ?th = h, iff any one of the
following equivalent conditions is satisfied.

1. H = H†, where the adjoint is taken with respect to the scalar product
defined by h, i.e., LΓh = 0

2. H is diagonalizable and has a real spectrum
3. all orbits e−iHtψ are bounded sets, for any initial condition ψ.

When moving to infinite dimensions, one may try to use a similar procedure, how-
ever the corresponding separation of H holds true only for a special class of oper-
ators. Therefore one has to use a different approach. Further details can be found
in [10].



Classical and Quantum Symmetries Reduction and Integrability 187

Acknowledgements

We wish to thank the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the
Agenzia Spaziale Italiana (ASI) for partial support.

References

[1] Birkhoff G., Dynamical Systems, Am. Math. Soc., Providence 1927.
[2] Carinena J., Gracia X., Marmo G., Martinez E., Munoz-Lecanda M. and Roman-Roy

N., Geometric Hamilton-Jacobi Theory, Int. J. Geom. Meth. Mod. Phys. 3 (2006)
1417-1458.

[3] Dirac P., The Principles of Quantum Mecahanics, Clarendon Press, Oxford 1958.
[4] Ercolessi E., Marmo G. and Morandi G., From the Equations of Motion to the Canon-

ical Commutation Relations, La Rivista del Nuovo Cimento, Serie V 33 (2010) 401-
590.

[5] Giordano M., Marmo G. and Rubano C., The Inverse Problem in Hamiltonian For-
malism: Integrability of Linear Hamiltonian Fields, Inverse Problems 9 (1993) 443-
467.

[6] Koopman B., Hamiltonian Systems and Transformations in Hilbert Space, Proc. Natl.
Acad. Sci. 17 (1931) 315-318.

[7] Jacobi C., Jacobi’s Lectures on Dynamics (delivered at the University of Konigs-
berg in the Winter Semester 1842-1843 and According to the Notes Prepared by C.
Brockardt), Hindustan Book Agency, Gurgaon 2009.

[8] Mackey G., Mathematical Foundations of Quantum Mechanics, Benjamin, New York
1963.

[9] Man’ko V., Marmo G., Sudarshan E. and Zaccaria F., Inner Composition Law of Pure
States as a Purification of Impure States, Phys. Lett. A 273 (2000) 31-36.

[10] Marmo G., Simoni A. and Ventriglia F., Quantum Systems and Alternative Unitary
Descriptions, Int. J. Mod. Phys. A 19 (2004) 2561-2578.

[11] Segal I., Mathematical Problems of Relativistic Physics, J. Math. Phys. 1 (1960) 468-
488.



International Conference on Integrability
Recursion Operators and Soliton Interactions
29-31 August 2012, Sofia, Bulgaria
B. Aneva, G. Grahovski
R. Ivanov and D. Mladenov, Eds
Avangard Prima, Sofia 2014, pp 188–205

PARAMETRIC REPRESENTATIONS OF SO(n) ORTHOGONAL
MATRICES FOR THE PURPOSES OF QUADRATIC STABILITY
ANALYSIS

CLEMENTINA MLADENOVA, FAN ZHANG† and DIRK SÖFFKER†

Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.4
1113 Sofia, Bulgaria
†Dynamics and Control, Department of Mechanical and Process Engineering
University of Duisburg-Essen, 47057 Duisburg, Germany

Abstract. The group SO(n) is of a great interest in physics and mechanics
because of its numerous applications to problems of monitoring of unknown
nonlinear systems. The present paper treats the basic theory of this group
for the purposes of quadratic stability analysis of cognitive control systems.
It is shown that any transformation of the group SO(n) may be presented
as a product of plane transformations in clear analytical forms, appropri-
ate for practical applications. The approach presented here is inspired by
the close analogy of plane rotations with the vector-parameterization of the
SO(3) group.

1. Introduction

The group SO(n) is a generalization of the SO(3) rotation group acting in R
n.

Since R
3 space is the real space where one lives, and where all laws of classical

mechanics are valid, the experience with the investigations of the motions in R
3

is helpful to study the motions in higher dimensions. Here is the place to stress the
special attention on the group SO(3) since it is a very important in modelling and
control of a mechanical system in R

3 and its kinematical description [2]. It is well
known that the rigid-body motion in R

3 is described by the Euclidean group E(3),
and that the SO(3) group cannot be avoided in the representation of orientations.
The appropriate parameterization of SO(3) is one of the most important practical
problem in mechanics because it has a great influence over the overall efficiency
of all methods [3], [17]. Angular velocity or momentum information is required

188
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by the most control strategies. It could be obtained using the derivatives of var-
ious orientation parameters like Euler and Bryant angles, Euler or Cayley-Klein
parameters, quaternions [2], [5], etc., or the so called vector-parameter (called also
Rodrigues or Gibbs vector [14]), which as an element of a Lie group, has a very
nice and clear properties and simplifies the treatment of many problems [11], [13].
It is worth to be mentioned that there is an analogy between the rigid body descrip-
tion through vector-parameter and this one realized on the base of screw operators.
The intrinsic mathematical formalism in physical rigid body motions description
is presented with the use of affine geometry together with Lie group theory and it
is used for description of the kinematic pairs.

After introducing the vector-parameter in connection with representation theory of
the SO(4) Lorentz group in the special relativity theory [4], different group param-
eterizations of the rotational motion for higher dimensions and their after–effects
are investigated. There is also a great interest in using SO(n) for n ≥ 4 in the
theory of elementary particles. In the general case (when n is big) the expressions
for the orthogonal matrices are very complicated, but as it is shown latter in the
paper, in every group SO(n) may be found a subgroup of transformations which
may be parameterized in a simple and universal way which does not depend on the
dimension n of the vector space.

Plane rotations appear in many classical and quantum mechanical analysis which
lead to considerations of the spectrum and eigenvectors of either 3 × 3 or 4 × 4
real symmetric matrices. The objective is: given a symmetric 3 × 3 matrix A,
construct a diagonalizing rotation matrix O such that

OTAO = Λ = Diag [λ
σ(1)

, λ
σ(2)

, λ
σ(3)

] (1)

where T denotes the matrix transposition, λ1 ≤ λ2 ≤ λ3 are the eigenvalues of the
matrix A and σ is an element of the group Σ3 of permutations of the three element
set 1, 2, 3.

The story starts with the Jacobi’s method for solving the eigenvalue problem for
a concrete 8 × 8 symmetric matrix that arises in his studies on dynamics. Jacobi
diagonalizes the above matrix by performing a sequence of orthogonal similar-
ity transformations and his method is relevant and effective in all dimensions (see
[9] for numerical counterpart). Each transformation is a plane rotation, chosen so
that the induced similarity diagonalizes some 2 × 2 principal submatrix, moving
the weight of the annihilated elements onto the diagonal. Performing the same
procedure in lower dimensions has a lot of specificity. E.g., using the isomor-
phism between 4 × 4 orthogonal matrices and algebra of quaternions [1] present
a construction of an orthogonal similarity that acts directly on 2 × 2 blocks and
diagonalizes a 4 × 4 symmetric matrix. This problem appears in many concrete
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situations in physics, mechanics, crystallography, elasticity, hydromechanics, ro-
botics, etc., where one has to deal with various symmetric matrices.

Having in mind the abundance of contexts in physics, mechanics, crystallography,
elasticity, hydromechanics, robotics, etc., where symmetric matrices appear, this
problem is useful in any concrete situation, as it happens in quadratic stabilization
of cognitive systems.

Cognitive capability into automatic control system designed for stabilization prob-
lem is a quite interesting subject of research at recent time. Different interpretations
of cognition exist. The point of view in cognitive science is that cognition can be
treated as a computational process operating on representational structures. A cog-
nition oriented method in accordance with the characteristics of cognitive control
systems is quite appropriate for investigation of unknown nonlinear discrete-time
systems. Assuming that the system states are fully measurable and measurements
are free of noise, the proposed method can realize quadratic stabilization. The
suggested stabilization method requires neither the information about the systems
dynamical structure nor the knowledge about system physical behaviors. All the
information necessary for stabilizing the unknown system is gained during the in-
teraction of the controller with the unknown system to be controlled. The core of
the problem is the data-driven quadratic stability criterion, which is taken as the
expert knowledge in the proposed control method. More details concerning this
criterion may be found in the paper [20] as well as in the references in it. The
criterion is based on the geometrical interpretation of Quadratic Lyapunov Func-
tions (QLF) [7] and transforms the quadratic stability criterion into the problem
of judging emptiness of a polyhedrial cone, which is identical to solving a max-
min optimization problem. The focus is establishing a data-driven online stability
monitoring method suitable for unknown discrete-time nonlinear systems [8]. The
proposed stability condition shows that the existence of a QLF can only be guaran-
teed if the observed system trajectory can be mapped with one certain orthogonal
matrix at every time instant into a negative halfspace, which is equivalent to the fact
that the corresponding polar cone of the mapped data has a non-empty intersection
with the positive real space.

The paper is organized as follows: An expert knowledge in cognition-oriented con-
trol approach is proposed after some introduction words clarifying the aim of the
paper. The problem of data-driven stability analysis is involved, the diagonal qua-
dratic Lyapunov function (DQLF) and it is presented the relations between DQLF
and QLF. This is our motivation to investigate further in the paper how to obtain
the SO(n) matrices which guarantee cognition-oriented quadratic stabilization of
unknown nonlinear systems. In the beginning, an useful algorithm for numerical
parametrical presentation of SO(n) group is presented. Further, the general theory
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of SO(n) group is given. In particular, any element of the group SO(n) is pre-
sented as a product of not more than [n/2] plane transformations and it is noted
that the theory of plane rotations, reviewed in the text, is analogous to the vector-
parameterization of the rotation group SO(3) , that is treated in a separate section.
The analytical form of n× n orthogonal matrices is presented in the last section.

2. Data-Driven Stability Criterion as Expert Knowledge in Cognition
- Oriented Stabilization

A data-driven stability criterion is used as the expert knowledge in the cognition-
oriented control approach. The term data-driven is used to characterize the class
of methods that appear in recent years in the field of system analysis and control.
The data-driven methods use only measured data of the target system to solve
system analysis and control problems, thereby possessing the advantages when
a sufficiently precise model is hard to be built, unlike the widely used model-based
methods which rely to a large extent on a precise mathematical model.
This feature makes the data-driven stability judgment method more suitable to
serve as expert knowledge in cognition-oriented stabilization. In cognition-oriented
stabilization, a precise representation of the dynamics of an unknown system can-
not be obtained before the control but refined from the interaction between the
controller and the plant. This fact means the representation of the plant dynamics
is dynamically changing and should, if necessary, be partitioned into several local
models. On the other hand, in model-based stability analysis, the stability can be
judged by finding a common Lyapunov function of these different local models,
which is usually difficult to be solved algorithmically especially when the local
model is a nonlinear one.
In contrast, the system dynamics which is contained in the system trajectory, be-
cause the data-driven method concentrates on the system trajectory, is taken as a
whole without being partitioned into local models. In this way the problem of find-
ing a common Lyapunov function is avoided. From this perspective, it can be seen
that a data-driven stability criterion is inherently suitable for stability judgment in
cognition-based stabilization, i.e. it is suitable for quadratic stability assessment of
an arbitrary unknown nonlinear system. In this aspect a necessary and sufficient
condition for determining the existence of a Quadratic Lyapunov Function (QLF)
for currently measured system trajectories is proposed. This problem is handled
by using of the geometrical links of QLFs with convex cones [20]

2.1. Problem Definition of Data-Driven Stability Analysis

The discrete-time nonlinear system concerned in this thesis has the form of

x (k + 1) = F (x(k)) (2)
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with f(·) : Ω → R
n a mapping from a compact set Ω ⊂ R

n into the n - dimen-
sional real vector space R

n, and with the system state vector x belonging to the
region Ω. The definition for the quadratic stability for such systems can be stated
as follows
Quadratic Stability: The discrete-time nonlinear system (2) is defined to be qua-
dratic stable if there exists a positive definite Hermitian matrix P such that the
first-order difference of the function V (x (k)) = x (k)T P x (k) along the solution
of system (2) satisfies

∆V (x (k)) = V (x (k + 1))− V (x (k)) = V (f(x (k)))− V (x (k)) ≤ 0.

Correspondingly, the function V (x (k)) = x (k)T P x (k) is named as the Qua-
dratic Lyapunov Function (QLF). If in addition P is diagonal, V (x (k)) is named
as Diagonal Quadratic Lyapunov Function (DQLF) and the related system (3) is
defined to be diagonally quadratic stable.
In the data-driven context, the existence of a QLF cannot be determined by using
the analytical form of f(x) because it is unknown. Suppose that the system (2)
be fully observable and the system states be measured without noise. At the time
instant t = r, the data set containing r consecutive measurements of system states
can be denoted as

Xr = {x(1), ... , x(r)} . (3)

The task of online stability judgment in this contribution is defined as to determine
the existence of a QLF directly from the data set (3) instead of a mathematical
description of f(x) at every time instant. The system is judged as quadratic stable
if and only if a QLF can be found based on the measured data.

2.2. Relations Between DQLF and QLF

Searching a QLF V (x) = x (k)T P x (k) is equal to searching a suitable positive
definite matrix P . The complete set of the matrix P in QLF can be mapped to
surjectively from the special orthogonal group SO(n) (defined in the next section)
and the conventional topology of n - dimensional positive real vector space R

n
+.

This mapping can be defined as

(O, d) 7→ P : P = OT Diag [d]O (4)

where O ∈ SO(n) and d is a real vector in R
n
+. It can be concluded that no QLF

exists if no element over the complete set SO(n)×R
n
+ because the mapping (4)

is surjective, can be found and to construct a QLF, and vice versa. Therefore, the
existence of a QLF can be determined by searching through the special orthogonal
group SO(n) and the conventional topology of Rn

+.
A left-multiplication with the orthogonal matrix O given in (4) of the both sides of
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the concerned discrete-time system (2), x (k + 1) = f(x (k)) leads to the trans-
formed system

z (k + 1) = g(z (k)), z (k) = Ox (k), g(z (k)) = O f(x (k)). (5)

If the discrete-time system (2) has a QLF V (x) = x (k)T P x (k), according to
the definition of QLF it can be obtained that ∆V (x) = x (k + 1)T P x (k + 1) −
x (k)T P x (k) < 0. Correspondingly, taking the function Vz(z) = z(k)T Dz(k)
as the Lyapunov function candidate for the transformed system, withD = Diag[d],
given in the mapping (4), we have

∆Vz(z) = z (k + 1)T Dz (k + 1)− z (k)T d z (k)

= z(k + 1)TOT DO z (k + 1)− z (k)TOT dO z (k) (6)

= x (k + 1)T P x (k + 1)− x (k)T P x (k) < 0

which shows that the function Vz(z) is a DQLF for the transformed system (5).
On the other hand, if the transformed system (5) had a DQLF, it can be proven
similarly to the above discussion that the system (2) has a QLF, which is composed
by the orthogonal matrix in the system transformation and the diagonal matrix in
the DQLF of system (5). From this discussion it can be seen that a QLF of the
system (2) is equivalent to the DQLF of its corresponding transformed system (5),
which is stated as the following

Lemma 1. If the discrete-time system (2) has a QLF V (x (k)) = x (k)T P x (k),
then there exists an orthogonal matrix O such that the transformed system (5)
possesses a DQLF as Vd(z (k)) = z (k)T D z (k), where D = OP OT and
z (k) = Ox (k), and vice versa.

The orthogonal matrix O used in the above system transformation is exactly the
same as the orthogonal matrix used in the mapping (4). Since the searching a QLF
is equivalent to searching all through the combinations in the special orthogonal
group SO(n) and the conventional topology of R

n
+, it can be concluded that to

search a QLF within SO(n)×R
n
+ for the system (2) is equivalent to searching a

DQLF within R
n
+ for the system (5) transformed with every element in the special

orthogonal group SO(n). This fact not only shows that the above mentioned lemma
gives the both necessary and sufficient condition, but also provides us an idea to
determine the existence of a QLF for a discrete-time nonlinear system: if no DQLF
exists for every possible orthogonal transformation of the concerned system, the
concerned system has no QLF and is correspondingly not quadratic stable.
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2.3. Numerical Algorithm for Parametric Presentation of SO(n) Matrices

In this section an useful algorithm [18] for numerical parametrical presentation
of SO(n) matrices is presented for the purposes of quadratic stability analysis of
cognitive - oriented control [20].
The algorithm is based on generating of random variables and the method of Gram
- Schmidt orthogonalization. It consists of the following main moments
An orthogonal matrix is defined as

Φ = [Φ1Φ2 . . .Φn] (7)

where

Φ1 = v1(θ1)

Φi = (Q1Q2 . . . Qi)vi(θi), i = 2, . . . , n− 2 (8)

Φn = Q1Q2 . . . Qn−1.

The definition of the parameters in (8) can be stated as follows

• θi - (n− 1)× 1 dimensional vector containing n− 1 parameters

θi =









θi1
θi2
. . .

θi(n−1)









(n−1)×1

(9)

• vi(θi)− (n− i+ 1)× 1 dimensional vector

vi(θi) =













sin θi1
cos θi1 sin θi2

. . .

(
∏n−i−1

j=1 cos θij) sin θi(n−1)
∏n−i

j=1 cos θij













(n−i+1)×1

(10)

• Qi is a (n−i+1)×(n−i) matrix, constructed by the following procedure:
1. After vi(θi) being obtained, construct randomly n− i+1 vectors bj ,
j = 2, . . . , n− i+1, in such a way that vi(θi) and these constructed
vectors form a base in R

n−i+1, denoted as

Bi = [vi(θi), b2, . . . , bn−i+1](n−i+1)×(n−i+1). (11)

2. Execute Gram-Schmidt procedure to the base Bi to obtain the or-
thonormal base in R

n−i. Introducing the notation gi = vi(θi), do the
following calculation

gj+1 = bj+1 =

j
∑

j=1

< bj+1, gj >

< gj , gj >
, qj =

gj+1

|| gj+1 ||
, j = 1, 2, . . . , n− i. (12)
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Then the orthonormal base is obtained as [vi(θi), q1, . . . , qn−1].
3. The matrixQi can be obtained as

Qi = [q1, . . . , qn − i]. (13)

Since this algorithm contains many numerical operations and requires a lot of com-
putational time, further in the paper, we present an analytical form for presenting
SO(n) matrices.

3. General Remarks on SO(n) Group

3.1. The Lie Group SO(n)

A Lie group is a set G such that: 1) G is a group; 2) G is a smooth manifold;
3) the group operations of composition and inversion are smooth maps of G into
itself relative to the manifold structure defined in 2).
SO(n) is a Lie group. The matrices in SO(n) present the rotational motions and
as a set are defined as follows

SO(n) = {O ∈ Mat(n,R) ; detO = 1, OOT = I} (14)

where Mat(n,R) is the group of n×n matrices with elements in R together with
its Lie algebra (i.e., its infinitesimal generators) consisting of the skew-symmetric
n × n matrices. If A belongs to the Lie algebra of SO(n), the matrix I − A is
invertible (see [12], [13]). The Hamilton - Cayley formula provides in general the
connection between the Lie algebra and the group, and therefore every orthogonal
n × n matrix O ∈ SO(n) (real or complex) can be written in the form [5], [19],
[16]

O = O(A) = (I +A)(I −A)−1

= (2I − (I −A))(I −A)−1 = 2(I −A)−1 − I. (15)

It follows that this map can be easily inverted and in this way one obtains the matrix
A = (O − I)(O + I)−1, AT = (OT − I)(OT + I)−1, or

A =
1

2
(A−AT ) = (O −OT )(2I +O +OT )−1. (16)

The last is fulfilled provided that det(I + O) 6= 0, i.e., |I +O| 6= 0, which
is satisfied since one has O + I = 2(I − A)−1 and |O + I| = 2n |I −A|−1.
Hence, |O + I| = 0 only when the elements of the matrix A are very large. For
the matrix (I − A)−1 we may write the Neumann series, namely: (I − A)−1 =
I + A + A2 + A3 + . . .. According to the theorem of Hamilton - Cayley every
matrix is a root of its characteristic polynomial, which degree is equal to the order
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n of the matrix. Hence, the n-th and higher degrees of the matrix O are expressed
through the lower ones

O = a1A
n−1 + a2A

n−2 + . . . an−1A+ an. (17)

The number of the independent parameters of the matrix A = Aij is n(n− 1)/2
and they are parameters which define the special orthogonal transformation SO(n).
Generally, the matrix O may be presented as O = f(A)/f(−A), where f(A) is
any bounded function for which f(A) 6= f(−A) and |f(A)| 6= 0. For example,
such function is f(A) = expA/2 and therefore O = expA (for more details see
e.g. [15]).
From the general theory we have Aψ = λψ, where ψ and λ are respectively the
eigenvector and the eigenvalue. Then we may present the determinant of the matrix
λI −A in the well-known polynomial form

|λ−A| = λn − a1λ
n−1 + a2λ

n−2 − . . .+ (−1)nan = 0 (18)

where the following equations are valid

a1 = λ1 + λ2 + . . .+ λn = A11 +A22 + . . .+Ann = At (19)

an = λ1λ2 . . . λn (20)

a2 = λ1λ2 + λ1λ3 + . . .+ λn−1λn =
1

2
[(λ1 + λ2 + . . .+ λn)

2

(21)
−(λ21 + λ22 + . . .+ λ2n)]

Ak
t = (Ak)t = λk1 + λk2 + . . .+ λkn (22)

a2 =
1

2
[(At)

2 − (A2)t], At means the trace of the matrix A. (23)

For a matrix A of second order one has: A2+AtA+ |A] = 0. Analogically, iden-
tities for higher order matrices may be obtained, and having in mind the Hamilton
- Cayley equation for the skew-symmetric matrices, they can be simplified signifi-
cantly, and in the special cases of n = 2, 3, 4, 5, 6 look like

A2 + |A| = 0 (24)

A3 −
1

2
(A2)tA = 0 (25)

A4 −
1

2
(A2)tA

2 + |A| = 0 (26)

A5 −
1

2
(A2)tA

3 +
1

2
[((A2)t)

2 − (A4)t]A = 0 (27)

A6 −
1

2
(A2)tA

4 +
1

2
[((A2)t)

2 − (A4)t]A
2 − |A| = 0. (28)
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3.2. Plane Orthogonal Transformations

The matrix O = O(A) in (15) may be presented in the following way

O = O(A) = 2
k−1
∑

r=0

b2r(I −A)A2(k−1−r) − I, n = 2k

(29)

O = O(A) = I + 2
k−1
∑

r=0

b2r(I −A)A2(k−r)+1, n = 2k + 1

where

b2r = (
r

∑

m=0

a2m)/(
k

∑

m=0

a2m). (30)

Here

a2m = (−1)mSm = (−1)m
k

∑

ir=1

λ2i1λ
2
i2
. . . λ2ir . . . λ

2
im

(31)

= −[a2(m−1)s1 + a2(m−2)s2 + . . .+ a2sm−1 + sm]

i1 6= i2 6= . . . 6= ir . . . 6= im

are the coefficients of the characteristic (minimal) equation of a skew-symmetric
n× n matrix of a general type, expressed by elementary symmetrical polynomials
sm via the squares of the eigenvalues λ2i = −λ2i+1, i = 1, 2, . . . k

sm =
k

∑

i=1

λ2mi =
1

2
(A2m)t, m = 0, 1, . . . , k. (32)

It is easy to be seen that the equations (29)-(32) are alternative general form of
those given in the previous section.
The skew-symmetric matrix A may be written in the form of linear combinations

A =
m
∑

i=1

A0i =
m
∑

i=1

αi(z
′i.zi − zi.z′i), m ≤ N =

n(n− 1)

2
(33)

of the plane matrices

A0 = α(z′.z − z.z′), A0[kl] = −A0[lk] = α(z′k.zl − zk.z
′

l) (34)

where z.y = (zkyl), k, l = 1, 2, . . . , n means diadic matrix composed of n-
dimensional (real or complex when SO(n, C) is considered) vectors z and y -
the so called divisors of the matrix A0, and α is a normalizing coefficient.
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Using some tensor algebra we may introduce the matrix of rang n−2, the so called
dual skew-symmetric matrix A× of A as follows

A×

i1i2...in−2
= εi1i2...in−2in−1inAin−1in , ik = 1, 2, . . . n (35)

where εi1i2...in−2in−1in are the Levi - Civita symbols in n - dimensional space by
which one defines also the product AB×

(AB×)i1i2...in−3j = εi1...inAin−2in−1
Binj . (36)

Then the necessary and sufficient condition the matrix A to be a simple one, i.e.,
A = −AT is equivalent the matrix products given below to be equal to the zero
matrix, namely

AA× = A×A = 0. (37)

In a similar way, one can define the product A×B× and to obtain the relations

AB +B×A× =
1

2
(AB)t, A2 + (A×)2 =

1

2
(A2)t. (38)

From the second equation of (38) follows the minimal equation

A3
0 =

1

2
(A2

0)tA0,
1

2
(A2

0)t = s1 = λ2. (39)

The inverse statement is also valid: every n× n matrix A = −AT , which obeys
to (39) and for which s1 6= 0 is simple. In this manner, we may conclude that the
conditions (39) and s1 6= 0 are necessary and sufficient for the matrix A to be a
simple one.
The orthogonal transformation O0 = O(A0) (see the equations 29), which is
defined through the simple matrix A0, which fulfills (39) may be written in the
general universal form

O(A0) = O0 = I +
2

1− s1
(A0 +A2

0), 1− s1 6= 0, s1 =
1

2
(A2

0)t (40)

which coincides with the form of any transformation of the group SO(3) . For the
matrix O0 = O(A0), from (40) is valid the minimal equation

O3
0 = (γ − 1)(O2

0 −O0) + I, γ = 4− n+ (O0)t (41)

and conversely, the matrix A = −AT , defining the transformation O = O(A)
which obeys to (39) is simple. In this case the general relation (16) becomes

A = A0 = (O0 −OT
0 )(2I +O0 +OT

0 )
−1 = (O0 −OT

0 )/(4− n+ (O0)t). (42)

Definition 2. The orthogonal transformation O = O(A0) defined in (40) via the
skew-symmetric matrix - parameters A0 is a plane rotation.
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This name is natural because the vectors z, z ′ through which the matrix A0 is
expressed according to (34), define some plane in n - dimensional space. The
product of two plane orthogonal transformations is also a plane one

O′

0O0 = O(A′

0)O(A0) = O(A′′

0) = O′′

0 . (43)

In this case the matrices A0, A
′
0 have to satisfy the condition

A0A
′×

0 +A′

0A
×

0 = 0 (44)

and since

(AB× +BA×)i1i2...in−3j =
1

2
δi1j(AB

×)mi2...in−3m (45)

where δi1j–Cristoffel symbol, we may write

(A0A
′×

0 )ji2...in−3j = (A
′×

0 A0)ji2...in−3j = 0. (46)

Having in mind the relation (42), for the resultant matrix - parameter A′′ = A
′′

0

the following expression is obtained

A′′

0 =< A′

0, A0 >=
A′

0 +A0 + [A′
0, A0]

1 + 1
2(A

′
0A0)t

(47)

which is analogical to the composition law of the vector - parameters of the SO(3)
group.
If we set for α in (34) to be equal to α = (z2 + zz′)−1, at the conditions z2 =
z′2 6= 0, 1− s1 6= 0, we get

A0 =
z′.z − z.z′

z2 + zz′
, s1 =

zz′ − z2

zz′ + z2
· (48)

If we substitute (48) in (40), we obtain the matrix of so called plane orthogonal
transformation

O0 = O(A0) = I − 2e.e+ 2e′0.e
′

0 = O[z′, z] (49)

which realizes the transition

O[z′, z] z = z′. (50)

Here

e0 =
z

√
z2
, e′0 =

z′
√
z′2

, e =
z + z′

√

(z + z′)2
, e20 = e

′2
0 = e2 = 1. (51)

The matrix O[z′, z] from (49) as well as every plane transformation is a product
of two transformations of symmetry

O0 = (I − 2e2.e2)(I − 2e1.e1), A0 = (e2.e1 − e1.e2)/e1e2 (52)

and it corresponds to those unit vectors e1 and e2
e1 = e0, e2 = e or e1 = e, e2 = e0 (53)
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for which the equation (50) is fulfilled. The transformation of symmetry I − 2e.e
defines reflection according to a hyperplane orthogonal to the unit vector e and
(I − 2e.e)2 = I, |I − 2e.e|2 = 1 are valid.
Matrix O[z′, z] in (49) may be found as one of the solutions of (50). The product
of two plane transformations O′′ = O(A′′) = O(A′

0)O(A0) = O[z′′, z̃]O[z′, z]
has the structure of (52) when z̃ = z′. Obviously, the case z̃ = z′ is one of the
most simple realization of the condition (44), which in the general case leads to
the statement that between the four vectors z, z ′, z̃, z′′, defining the simple ma-
trices A0 and A′

0 in (48), not more than three are independent. That is why, if
we consider the set of all simple matrices, every two of which satisfy (44), then
the corresponding family of the plane rotations will be closed with respect to the
operation (47) and defined in some subspace of three independent vectors of the
n-dimensional space. This is just the situation in R

3, where every transformation
of the group of rotations SO(3) is plane. For example, all 3× 3 rotation matrices
in Euler angles are plane.
It is obvious, that the family of the plane transformations, defined through the set
of all commutative simple matrices is given in the subspace of two independent
vectors - in some plane. According to a theorem of Cartan [6], every transforma-
tion of the group SO(n) in n - dimensional vector space may be presented as a
product of even numbers 6= n transformations of symmetry. As far as the matrix
O[z′, z] is a product of two transformations of symmetry, than any transformation
of the group SO(n) may be presented as a product not greater than [n/2] plane
transformations. Naturally, this procedure has non-unique character. It has to be
also noted that the theory of plane rotations given here relies heavily on the anal-
ogy with vector-parameterization of the rotation group SO(3), which we present
on purpose in the section that follows.

4. Vector Representation of Rotation Motions

Let us consider the special orthogonal group SO(3) presenting the rotation mo-
tions

SO(3) = {O ∈ Mat(3,R) ; detO = 1, OOT = I} (54)

where Mat(3,R) is the group of 3× 3 real matrices together with its Lie algebra
(i.e., its infinitesimal generators) consisting of the real skew-symmetrical 3 × 3
matrices. Again here is valid that if A belongs to the Lie algebra of SO(3), the
matrix I − A is invertible, and the Hamilton - Cayley transformation given in
(15) is used. As an exception in the three-dimensional space, there exists a map
(actually isomorphism) between vectors and skew-symmetric matrices, i.e., if c ∈
R
3, we have c → c×, where c× is the corresponding skew–symmetric matrix.



Parametric Representations of SO(n) Orthogonal Matrices for the Purposes . . . 201

Then we may write the SO(3) matrix in the form [11]

O = O(c) = (I + c×)(I − c×)−1 =
(1− c2)I + 2 c⊗ c+ 2 c×

1 + c2
(55)

and consider it as a mapping from R
3 to SO(3) for which the smooth inverse is

c× =
O −OT

1 + tr(O)
· (56)

Here I is the 3× 3 identity matrix, c⊗ c means diadic, tr(O) is the trace of the
matrix O and “T ” is the symbol for transposition of a matrix. The formula above
provides us with an explicit parameterization of SO(3). The vector c is called
vector-parameter. It is parallel to the axis of rotation and its module ‖c‖ is equal
to tan(α/2), where α is the angle of rotation. The so defined vector-parameters
form a Lie group with the following composition law

c′ = 〈c1, c2〉 =
c1 + c2 + c1 × c2

1− c1.c2
· (57)

The symbol “×” means cross product of vectors. Every component of c can take
all values from −∞ to +∞ without any restrictions, which is a great advantage
compared with the obvious asymmetry in the Eulerian parameterization. The vec-
tor c ≡ 0 corresponds to the identity matrix O(0) ≡ I and −c produces the inverse
rotation O(−c) ≡ O−1(c). Conjugating with elements from the SO(3) group
leads to linear transformations in the vector-parameter space

O(c)O(c′)O−1(c) = O(c′′)

where c′′ = O(c) c′ = Oc c
′. Such a parameterization in the Lie group theory is

called natural. It is worth mentioning also that no other parameterization possesses
neither this property nor a manageable superposition law. This parameterization of
SO(3) is known also as Gibbs’ vector or Rodrigues’ vector [14]. Some authors call
it vector of finite rotations. Vector representation of rotations in three-dimensional
space R

3 is a subject of considerations of many authors, but we are the first in the
literature using this parameterization as a Lie group with its nice group properties
[11]. As for considering rotation problems of a rigid body and spacecrafts, it is
used later also in modeling and control of open-loop mechanical systems like ma-
nipulators, vehicle devices, biomechanical systems [12]. Important properties of
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the composition law of the vector-parameter group are

O(c′)O(c) = O(c′′), c′′ = 〈c′, c〉 =
c′ + c+ c′ × c

1− c′ . c

〈c, 0〉 = 〈0, c〉 = c, 〈c, −c〉 = 0, 〈c′, c〉 6= 〈c, c′〉

〈〈a, b〉, c〉 = 〈a, 〈b, c〉〉 = 〈a, b, c〉, (OaOb)Oc = Oa(ObOc) (58)

−〈a, b〉 = 〈−b, −a〉, −〈a, b, c〉 = 〈c, −b, −a〉

O−1(〈a, b〉) = (O(a)O(b))−1

= O−1(b)O−1(a) = O(−b)O(−a) = O(〈−b, −a〉).

From the alternative expression of tne Cayley formula

O = (I −A)(I +A)−1 (59)

we obtain the composition law in the case when c1 is the first rotation

c′ = 〈c2, c1〉 =
c1 + c2 − c1 × c2

1− c1.c2
· (60)

Generally said, we have

c
′

+ =
c1 + c2 + c1 × c2

1− c1.c2
, c

′

− =
c1 + c2 − c1 × c2

1− c1.c2
·

The both vector-parameters c+ and c− correspond to the composition of two vec-
tors in inverse order, that are symmetrically situated according to the plane defined
by c1 and c2. This part is a proof for the strong analogy of plane orthogonal
transformations in n - dimensional space with the vector-parameterization of the
group SO(3).

5. Analytical Form of n× n Rotation Matrix

A block diagonal Givens matrix Ri(φ) ∈ R
n×n has the form [10]

Ri(φ) =









Ii−1 0 0 0
0 (cos(φ))i,i (− sin(φ))i,i+1 0
0 (sin(φ))i+1,i (cos(φ))i+1,i+1 0
0 0 0 In−i−1









, 0 ≤ φ ≤ 2π (61)

for i ∈ 1, 2, , . . . , n− 1. As can be seen, the Givens matrix Ri(φ) involves only
two coordinates that are affected by the rotation angle φ whereas the other direc-
tions, which correspond to eigenvalues 1, are unaffected by the rotation matrix. In
dimension n there are n− 1 Givens rotation matrices of the type (61). Composed
they can generate a n× n matrix R(φ) according to

R(φ) = R1(φ)R2(φ) . . . Rn−1(φ). (62)
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It is clear that the choice of the matrix R(φ) is a special one, when the angles in
matrices Ri(φ) are chosen to be equal.

An explicit presentation of R(φ) is of the form





















cos(φ) − cos(φ) sin(φ) ... ... (−1)n cos(φ) sinn−2(φ) (−1)n+ 1 sinn−1(φ)
sin φ cos2(φ) − cos2(φ) sin(φ) ... (−1)n−1 cos2(φ) sinn−3(φ) (−1)n cos(φ) sinn−2(φ)

0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. − cos2(φ) sin(φ)
.

.

.

.

.

.

.

.

.

.

.

. cos2(φ) − cos(φ) sin(φ)
0 ... ... 0 sin(φ) cos(φ)





















The matrix (62) is almost an upper triangular matrix but with sin(φ) on the first
subdiagonal and the (n − 2) × (n − 2) submatrix starting on position (2, 2) is
a Toeplitz upper triangular matrix. (A Toeplitz matrix T or diagonal - constant
matrix, is a matrix in which each descending diagonal from left to right is constant,
i.e., Ti,j = Ti+1,j+1).

Composed the Givens rotations can transform the basis of the space to any other
frame in the space. The matrix R(φ) fulfills the properties detR(φ) = 1 and
R(φ)RT (φ) = In, and the property R(φ = 0) = In holds. When n is odd, the
matrix R(φ) will have an eigenvalue 1 and the remaining eigenvalues are pairs of
complex conjugates, whose product is 1. The last is valid also when n is even.
Consequently, the matrix R(φ) is a rotation matrix and obviously orthogonal. We
may conclude that every rotation matrix when expressed in a suitable coordinate
systems, partitions into independent rotations of two-dimensional subspace like in
(61).

6. Conclusion

This study is provoked from the fact that the group parameterizations of the ro-
tational motions in higher dimensions and their after–effects are of a great in-
terest nowadays because of many applications in different scientific areas. The
motivation of the present investigation is how to obtain the SO(n) matrices in
analytical form which guarantee cognition-oriented quadratic stabilization of un-
known nonlinear systems. The paper is an interplay of the theory of SO(n) Lie
group, the plane representations of any SO(n) and the analogy with the vector-
parameterization of the rotation group in the three-dimensional space SO(3).
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ON VENTCEL’S TYPE BOUNDARY CONDITION FOR
LAPLACE OPERATOR IN A SECTOR∗
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Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 8, Sofia 1113, Bulgaria

Abstract. This paper deals with classical solutions of the Dirichlet-Ventcel
boundary value problem (BVP) for the Laplace operator in bounded sector
in the plane having opening of the corresponding angle ϕ0 > 0. Ventcel
BVP is given by second order differential operator on the boundary satisfy-
ing Lopatinksii condition there. As the boundary is non smooth, two different
cases appear: π

ϕ0

is irrational and π
ϕ0

is an integer. At first we prove unique-
ness result via the maximum principle and then existence of the classical
solution. To do this we apply two different approaches: the machinery of the
small denominators and the concept of Green function.

1. Introduction

This paper deals with existence and uniqueness of the classical solution for the
Laplace operator equipped with Ventcel’s type boundary condition in a bounded
sector in the plane. Ventcel boundary conditions are second order differential con-
ditions appearing in asymptotic models proposed by Feller and Ventcel [4], [7, 8]
(interpreted as a surface diffusion). The opening of the angle ϕ0 > 0 with vertex
at the origin is such that π/ϕ0 /∈ Q or π

ϕ0
∈ N, Q being the set of rational num-

bers and N standing for the set of positive integers. At first we state the problem
and prove uniqueness result (comparison principle) via the maximum principle for
elliptic equations. Our second step is to prove existence result for classical solu-
tions. To do this we apply the machinery of small denominators. Another approach
is from the theory of ordinary differential equations (see Section 3 of the paper).

∗Reprinted from J. Geom. Symmetry Phys. 31 (2013) 119–130.
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Under different conditions imposed on ϕ0 we prove existence of a C2 solution
in the bounded domain as well regularity results, including C∞ solutions. The
solution is found in the form of convergent series in rm sin(nπϕ

ϕ0
), m,n ∈ N. As

Laplace operator is C∞ and even analytic hypoelliptic, the main difficulties are in
proving regularity up to the boundary. Laplace-Dirichlet-Ventcel problem in a disc,
in a ring and in a bounded smooth domain were studied via pseudo-differential
operators approach in [2].
To be more precise, we shall mention that in 1951 M. Vishik studied in a bounded
smooth domain Ω the following BVP

∆u = F in Ω, −∆′u+
∂u

∂n
= f on ∂Ω (1)

where ∆′ is the Laplace-Beltrami operator on ∂Ω and n is the unit outer normal
to ∂Ω. He proved that (1) is a Fredholm BVP of index 0, i.e., it possesses finite-
dimensional kernel and co-kernel of the same dimension. Difficulties appear when
∂Ω has singular points (corner ponts in the plane, dihedral angles, conical points
in the multidimensional case). There are a lot of investigations on the subject by V.
Kondratiev, P. Grisvard, B.-W. Schulze and his collaborators and many others. We
concentrate in our paper to the Dirichlet-Ventcel problem in R

2 in a sector (corner
domain).

2. Formulation and Proof of the Main Results

2.1. Comparison Principle

In this Subsection we shall formulate Ventcel’s BVP and we shall prove a Compar-
ison principle which guarantees the uniqueness of the solution.
The Ventcel’s boundary value problem in the sector

SR = {(r, ϕ) ; 0 < r < R, 0 < ϕ < ϕ0} ∈ R
2

for Laplace operator is given by

∆u = f ∈ C0(S̄R),

(

−
∂2u

∂ϕ2
+ α

∂u

∂n
+ βu

)
∣

∣

∣

∣

r=R

= 0, u|ϕ=0 = u|ϕ=ϕ0
= 0. (2)

In polar coordinates

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ2

where the solution u ∈ C2(S̄R), the constants α > 0, β > 0 and ∂
∂n

= ∂
∂r

is the
unit outer normal to the arc ϕ ∈ (0, ϕ0), r = R of the boundary of SR.
We propose below several useful results to be used further on.
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1. Let α ≥ 0, β 6= 0 and u = rα sin(βϕ). Then ∆u = (α2−β2)rα−2 sin(βϕ).
Therefore, α = β ⇒ ∆u = 0, α = 1 ⇒ ∆u = (1− β2) sin(βϕ) r−1.

2. Let α ≥ 2. Then ∆(rαlog r sin(αϕ)) = 2αrα−2 sin(αϕ).
3. sin(βϕ) = 0 ⇐⇒ β = kπ

ϕ0
, k = ±1,±2, . . ..

To simplify the things we assume α = β = 1.

Proposition 1 (Comparison principle). Suppose that ∆u ≥ 0 in S̄R, u ∈ C2(S̄R),
u|ϕ=0 ≤ 0, u|ϕ=ϕ0

≤ 0 and − ∂2u
∂ϕ2 +

∂u
∂r

+u ≤ 0 on r = R. Then u does not attain
positive maximum in S̄R.

Proof: Put maxS̄R
u = u(P0) = M . If P0 ∈ SR then u ≡ const and therefore

M ≤ 0. Assume now P0 ∈ ∂SR. If P0 ∈ {ϕ = 0} ∪ {ϕ = ϕ0} ⇒ u(P0) = M

≤ 0, while P0 ∈ {r = R, 0 < ϕ < ϕ0} implies − ∂2u
∂ϕ2 (P0) ≥ 0 (maximum at-

tained in an interior point of the arc, ∂
∂ϕ

being tangential to the arc) and ∂ϕ
∂n

(P0) > 0

(Hopf maximum principle [5]). Thus

−
∂2u

∂ϕ2
(P0) +

∂ϕ

∂n
(P0) + u(P0) > 0

which leads to contradiction. So u(P ) ≤ 0 in S̄R. �

Corollary 2. The solution of (2) is uniquely determined in C2(S̄R).

In fact, −u verifies too the conditions of Proposition 1.

Proposition 3. Consider Ventcel’s boundary value problem (2) with

f = rk+1A(r, ϕ) A ∈ C2(S̄R) A(r, 0) = A(r, ϕ0) = 0, k ∈ N

and assume that the solution u is such that

u = r2D(r, ϕ), D ∈ C2(S̄R), D(r, 0) = D(r, ϕ0) = 0

π

ϕ0
= k + 2 + λ, 0 < λ < 1.

Then there exists a constant A > 0 such that for each ε > 0

|u| ≤
A

ε
r

π

ϕ0
−ε

sin(
πϕ

ϕ0
), 0 ≤ r ≤ R, 0 ≤ ϕ ≤ ϕ0.

Certainly, we can write C(ε) = A/ε.

Proof: Having in mind that sin(πϕ
ϕ0

) > 0 for ϕ ∈ (0, ϕ0), A(r, 0) = A(r, ϕ0) = 0

and l’Hospital rule we can write

f = rk+1B(r, ϕ) sin(
πϕ

ϕ0
), B(r, ϕ) ∈ C0(S̄R)
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respectively u = r2E(r, ϕ) sin
(

πϕ
ϕ0

)

, E(r, ϕ) ∈ C0(S̄R). Define now the auxil-
iary function

u1(r, ϕ) = C(ε)r
π

ϕ0
−ε

sin(
πϕ

ϕ0
)= C(ε)rk+2+λ−ε sin(

πϕ

ϕ0
), 0 < ε < λ < 1

where the constant C(ε) > 0 will be found further on. Then

∆u1 = −εC

(

2π

ϕ0
− ε

)

r
π

ϕ0
−ε−2

sin(
πϕ

ϕ0
)

and

∆(u− u1) =

[

εC

(

2π

ϕ0
− ε

)

rk+λ−ε + rk+1B(r, ϕ)

]

sin(
πϕ

ϕ0
)

= sin(
πϕ

ϕ0
)rk+λ−ε

[

εC(
2π

ϕ0
− ε) + r1+ε−λB(r, ϕ)

]

.

Having in mind that

r1+ε−λ|B(r, ϕ)| ≤ R1+ε−λC1, C1 = max
S̄R

|u|

for 0 ≤ r ≤ R, 0 ≤ ϕ ≤ ϕ0, 0 < 1 + ε− λ < 1 we get that ∆(u− u1) ≥ 0 if

C(ε) ≥
C1R

1+ε−λ

ε
(

2π
ϕ0

− ε
) , C1 = const > 0. (3)

On the other hand, u1|ϕ=0,ϕ=ϕ0
= u|ϕ=0,ϕ=ϕ0

= 0 and on {r = R}

u− u1 ≤ R2
(

C2 − C(ε)Rk+λ−ε
)

sin(
πϕ

ϕ0
), C2 = max

S̄R

|E| > 0.

Therefore,

u− u1 ≤ 0 on ∂SR if C(ε) ≥
C2

Rk+λ−ε
· (4)

Combining (3), (4) and the comparison principle to the Dirichlet problem for ∆
operator in SR we get u ≤ u1 in S̄R. Similar considerations for −u leads to
−u ≤ u1 ⇒ |u| ≤ u1 in S̄R. In other words, if f vanishes of order k + 1 with
respect to r and u vanishes of order 2 with respect to r, then u vanishes of order
k + 2 in r. Moreover, ∂k+2

r u ∈ Cλ−ε(S̄R), Cλ−ε, ε > 0 being the corresponding
Hölder class (see also [6]). �
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2.2. Existence of Solution via Small Denominators

This Subsection deals with the existence of a classical solution of the BVP (2) via
the method of the small denominators. The angle ϕ0 is such that π

ϕ0
> 2 is an

irrational number.
We assume that 0 < ϕ0 < π

2 as then r
π

ϕ0 ∈ C2[0, R], while ϕ0 > π
2 ⇒ r

π

ϕ0 /∈

C2[0, R]. We remind that each real x = [x] + {x}, [x] being the integer part of x,
0 ≤ {x} < 1. We shall find a solution of (2) for right-hand side

f(r, ϕ) =

∞
∑

m≥2

∞
∑

n=1

Bmnr
m−2 sin(

nπϕ

ϕ0
). (5)

To do this we suppose that Bmn = O( 1
(m2+n2)s

) and apply Cauchy integral test to
the double series (5) with R ≤ 1. Then (5) is absolutely and uniformly convergent
if

∫ ∫

x2+y2≥1/4

dx dy

(x2 + y2)s
< ∞ ⇐⇒ s > 1.

Thus f ∈ C0(S̄R). Moreover, f ∈ C1(S̄R) for s > 3
2 etc.

We split the proof of the solvability of (2) into two parts: u = u1 + u2, where

∆u2 = f in SR, u2|ϕ=0 = u2|ϕ=ϕ0
= 0 (6)

∆u1 = 0 in SR, u1|ϕ=0 = u1|ϕ=ϕ0
= 0. (7)

Evidently Lu1 = −Lu2 for r = R, where

L = −
∂2

∂ϕ2
+

∂

∂r
+ 1

is the boundary operator in (2).
We look for the non unique solution of (6) in the form

u2(r, ϕ) =
∑

m≥2

∞
∑

n=1

Amnr
m sin(

nπϕ

ϕ0
) (8)

i.e., if
π

ϕ0
/∈ Q,

π

ϕ0
> 2 (9)

then m 6= n π
ϕ0

/∈ Q, for all m,n ∈ N and therefore

∆u2 =
∑

m≥2

∞
∑

n=1

Amn

(

m2 −
n2π2

ϕ2
0

)

rm−2 sin(
nπϕ

ϕ0
) ≡ f.
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Consequently, Amn(m
2 − n2π2

ϕ2
0

) = Bmn, i.e.,

u2(r, ϕ) =
∑

m≥2

∑

n≥1

Bmn

m2 − n2π2

ϕ2
0

rm sin(
nπϕ

ϕ0
). (10)

As what concerns (7) we take

u1(r, ϕ) =
∞
∑

n=1

Anr
nπ

ϕ0 sin(
nπϕ

ϕ0
) (11)

beacause ∆u1 = 0. Here An are unknown coefficients and one can easily see that
for r = R

Lu1 =
∞
∑

n=1

An

(

n2π2

ϕ2
0

+
nπ

ϕ0
R−1 + 1

)

R
nπ

ϕ0 sin(
nπϕ

ϕ0
)

= −
∑

m≥2

∑

n≥1

Bmn

m2 − n2π2

ϕ2
0

(

n2π2

ϕ2
0

+mR−1 + 1

)

Rm sin(
nπϕ

ϕ0
)

i.e.,

An = −

∞
∑

m=2

Bmn

m2 − n2π2

ϕ2
0

(

n2π2

ϕ2
0

+mR−1 + 1

)

R
m−

nπ

ϕ0

n2π2

ϕ2
0

+ nπ
ϕ0

R−1 + 1
· (12)

To simplify the things let R ≤ 1. Then with C = const > 0

|An| ≤ C
∞
∑

m=2

1

(m2 + n2)s−1/2|(m− nπ
ϕ0

)|n2R
nπ

ϕ0

and

|u1(r, ϕ)| ≤ C
∞
∑

m=2

∞
∑

n=1

( r
R
)
nπ

ϕ0

n2(m2 + n2)s−1/2|(m− nπ
ϕ0

)|
,

r

R
≤ 1, n ≥ 1. (13)

Now we shall use the approach of the small denominators having many appli-
cations in the celestial mechanics (see for example [1]). There it is proved the
following result.

Lemma 4 ([1], Chapter 3, §12). Let σ > 0. Then for almost each real µ there exists
a constant K(σ, µ) > 0 such that

∣

∣

∣

∣

µ−
p

q

∣

∣

∣

∣

≥
K

|q|2+σ
, for all p, q 6= 0, p, q ∈ Z. (14)
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Evidently, µ /∈ Q.
A result similar to (14) was proved by Liouville in 1844 for each algebraic num-
ber (non-rational). Actually A. Thue improved the theorem of Liouville in 1908,
while in 1921 C. Siegel and in 1955 K. Roth obtained the optimal in some sense
results on the subject. Moreover, Liouville found effective examples of transcen-
dental numbers, known as Liouville transcendental numbers [3]. Unfortunately,
algebraic numbers form a countable set, i.e., they have zero Lebesgue measure.
The real numbers µ verifying (14) have a full Lebesgue measure and almost each
transcendental number is a solution of (14). Liouville numbers do not satisfy (14).
We shall suppose that π

ϕ0
is a solution of (14), i.e.,

∣

∣

∣

∣

m

n
−

π

ϕ0

∣

∣

∣

∣

≥
K

n2+σ
, for all m,n ∈ N. ⇐⇒

∣

∣

∣

∣

m−
nπ

ϕ0

∣

∣

∣

∣

≥
K

n1+σ
· (15)

According to (13), (15)

|u1(r, ϕ)| ≤
C

K

∞
∑

m=2

∞
∑

n=1

n1+σ

(m2 + n2)s−1/2
, n1+σ ≤ C0(n

2 +m2)
1+σ

2 . (16)

The double series in the right hand side of (15) is convergent if s > 2 + σ
2 , σ > 0

and u1 ∈ C0(S̄R). The differentiability of u1, u2 is shown similarly.
This way we come to

Theorem 5. Consider the Ventcel boundary value problem (2) with right-hand side
f satisfying (5), π

ϕ0
verifying (9), (15). Then for each sufficiently large s � σ

2 there
exists a unique C2(S̄R) solution of (2) that can be written in the form u = u1+u2
and u1, u2 satisfies (6), respectively (7).

Remark 6. The solution u is given by

u(r, ϕ) =
∑

m≥2

∞
∑

n=1

Bmn

m2 − n2 π2

ϕ2
0

rm sin(
nπϕ

ϕ0
) +

∞
∑

n=1

Anr
nπ

ϕ0 sin(
nπϕ

ϕ0
).

Evidently, u1 ∈ C∞(S̄R) ⇐⇒ An = 0, n ∈ N. The condition (9) implies that

if A1 = . . . = Ak−1 = 0, then u1 ∈ C
[ kπ
ϕ0

], kπ
ϕ0

> 2k. As ∆ is hypoelliptic,
f ∈ C∞(SR) ⇒ u ∈ C∞(SR). In general, f ∈ C∞(S̄R) 6⇒ u ∈ C∞(S̄R).

2.3. Existence of Solution for ϕ0 = π

We shall discuss here the existence of a classical solution of (2) in the case π
ϕ0

∈ N

and more specifically, π = ϕ0.
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As we mentioned before, another case to be investigated is π
ϕ0

∈ N. Let π
ϕ0

= 1,
i.e., ϕ0 = π. Again we look for u = ũ1 + ũ2

ũ1 =

∞
∑

n=1

Anr
n sin(nϕ).

Evidently, ∆ũ1 = 0. For appropriate An the harmonic function ũ1 ∈ C∞(S̄R).
We know from the beginning of the paper that

ũ2 =
∑

n6=m≥2

∞
∑

n=1

Amnr
m sin(nϕ) +

∞
∑

n=m=2

Annr
nlog r sin(nϕ) ≡ u3 + u4

implying

∆ũ2 =
∑

n6=m≥2

∞
∑

n=1

Amn(m
2 − n2)rm−2 sin(nϕ) +

∞
∑

n=m=2

Ann2n.r
n−2 sin(nϕ)

= f ≡
∑

m≥2

∞
∑

n=1

Bmnr
m−2 sin(nϕ)

i.e.,

Amn =
Bmn

m2 − n2
for m 6= n, Ann =

Bnn

2n
·

Consequently

|Amn| ≤
const

(m2 + n2)s+1/2
, for m 6= n, |Ann| ≤

const
n2s+1

·

If Amn are rapidly decreasing faster than any polynomial of (m2 + n2)s, s ∈ N,
s-arbitrary, we have that u3 ∈ C∞(S̄R). The function rnlog r /∈ C∞([0, R]) and
u4 ∈ C∞(S̄R) iff Ann = 0 for each n ≥ 2, i.e., if Bnn = 0 for n ≥ 2. We
conclude that C∞(S̄R) solution u of (2) eventually exists in the case π = ϕ0 if
the right-hand side f ∈ C∞(S̄R) satisfies infinitely many compatibility conditions
Bnn = 0, n ≥ 2. Due to the small denominators we have the effect of loss of
regularity of the corresponding solution u of (2).

3. Some Generalizations of the Previous Results

Consider in TR1R2
= SR2

\S̄R1
, R2 > R1 > 0 the following BVP

∆u = f, −
∂2u

∂ϕ2
+

∂u

∂n
+ u|SR1

∪SR2
= 0

u|ϕ=0 = u|ϕ=ϕ0
= 0,

π

ϕ0
/∈ Q.

(17)
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Then
∂

∂n

∣

∣

∣

∣

SR2

=
∂

∂r
,

∂

∂n

∣

∣

∣

∣

SR1

= −
∂

∂r
·

Repeating the proof of Proposition 1 we conclude that (17) with f = 0 possesses
the unique solution u ≡ 0 in C2(T̄R1R2

). As above, we are looking for f, u in the
form (22). Thus

u
′′

n +
1

r
u

′

n −
n2π2

ϕ2
0r

2
un = fn(r), R1 < r < R2

M1(u)|r=R1
= −u

′

n(R1) +

(

1 +
n2π2

ϕ2
0

)

un(R1) = 0

M2(u)|r=R2
= u

′

n(R2) +

(

1 +
n2π2

ϕ2
0

)

un(R2) = 0.

(18)

The boundary value problem (18) is simpler to deal with as

r
π

ϕ0 ∈ C
[ π

ϕ0
]
([0, R]) \ C

[ π

ϕ0
]+1

([0, R])

r
−

π

ϕ0 is unbounded near 0, while r
±

π

ϕ0 ∈ C∞([R1, R2]). Certainly, the general
solution of (18) is given by (we drop the subindex n and put ω = nπ

ϕ0
)

u = C1r
ω + C2r

−ω + ū (19)

C1, C2 being arbitrary constants and ū is some solution of the nonhomogeneous
equation (18). Therefore

C1M1(r
ω) + C2M1(r

−ω)|r=R1
= −M1(ū)|r=R1

C2M2(r
ω) + C2M2(r

−ω)|r=R2
= −M2(ū)|r=R2

.
(20)

The determinant δ of the linear with respect to C1, C2 system is

δ = (R1R2)
−1

(

R2

R1

)ω
[

(

R1

R2

)2ω (1 + ω2)R2 − ω

(1 + ω2)R2 + ω
.
(1 + ω2)R1 − ω

(1 + ω2)R1 + ω
− 1

]

× ((1 + ω2)R2 + ω)((1 + ω2)R1 + ω) 6= 0 (21)

for ω > 0, 0 < R1

R2
< 1.

If we write again the subindex n we easily see that

δn ∼ −ω4
n

(

R2

R1

)ωn

for ωn =
nπ

ϕ0
→ ∞.

Again we omit the details.
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4. Concluding Remarks

We can generalize the existence result to the boundary value problem (2) looking
for f , respectively u in the following form

f(r, ϕ) =

∞
∑

n=1

fn(r) sin
nπ

ϕ0
ϕ u(r, ϕ) =

∞
∑

n=1

un(r) sin(
nπϕ

ϕ0
) (22)

and supposing that f, u belong to some Hölder classes. Having in mind that

fn(r) =
2

ϕ0

∫ ϕ0

0
f(r,Θ) sin(

nπΘ

ϕ0
)dΘ

we see that if f ∈ Ck,α(S̄R) then fn ∈ Ck,α([0, R]), 0 < α < 1. Putting (22) in
(2) we get that un(r) should satisfy

u
′′

n +
1

r
u

′

n −
n2π2

r2ϕ2
0

un = fn in SR

(23)

Mun ≡ u
′

n(R) +

(

1 +
n2π2

ϕ2
0

)

un(R) = 0.

For the sake of simplicity denote ω = nπ
ϕ0

> 0 and drop the indexes n in (23). Let
0 < R ≤ 1. The standard Euler substitution r = et ⇐⇒ −∞ < t ≤ t0 =
ln R ≤ 0 transforms the equation (23) into

d2u

dt2
− ω2u = e2tf1(t), f1(t) ≡ f(et), −∞ < t ≤ t0 (24)

having the bounded solution for t → −∞

u = C1e
ωt + ū(t), C1 = const (25)

and ū being some bounded solution of (24). Thus, u = C1r
ω + ū(ln r).

The change t− t0 = z ≤ 0 ⇒ z = ln r
R

transforms (24) into

d2ū

dz2
− ω2ū = e2t0e2zf1(t0 + z) ≡ f2(z), z ≥ 0. (26)

The function U(z) = sinh(ωz)/ω satisfies the Cauchy problem U
′′

− ω2U = 0,
in which z ≤ 0, U(0) = 0, U

′

(0) = 1. Consequently

ū(z) =

∫ z

0

sinh(ω(z − ξ))

ω
f2(ξ)dξ.
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The change ξ = ln λ
R

, z = ln r
R

in the previous integral leads to

ū
(

ln
r

R

)

=
1

ω

∫ r

R

sinh
(

ω ln
r

λ

)

f(λ)λdλ

=
1

2ω

[

rω
∫ r

R

λ−ω+1f(λ)dλ− r−ω

∫ r

R

λω+1f(λ)dλ

]

.

(27)

The kernel of (23) contains r−ω
∫ 0
R
λω+1f(λ)dλ and we conclude that we can take

ū =
1

2ω

[

rω
∫ r

R

λ−ω+1f(λ)dλ− r−ω

∫ r

0
λω+1f(λ)dλ

]

. (28)

Evidently

r−ω

∣

∣

∣

∣

∫ r

0
λω+1f(λ)dλ

∣

∣

∣

∣

≤ const × r2

while there are the possibilities 0 < ω < 2, ω ≥ 2, for the first integral in the
right-hand side of (27), guaranteeing its convergence, respectively divergence for
r → 0. Supposing ω ≥ 2 (divergence to ∞) we can apply l’Hospital rule to obtain

lim
r→0

rω
∫ r

R

λ−ω+1f(λ)dλ = 0.

More precise results concerning the behavior of ū for r → 0 that take into account
f ∈ Ck,α([0, R]) and eventual vanishing of f at 0 can be obtained by using Taylor
formula in Hölder classes

f(r) = f(0) +
r

1!
f

′

(0) + . . .+
rk

k!
f (k)(0) +O(rk+α), r → 0. (29)

Going back to (23) we have that

C1M(rω)|r=R = −M(ū)|r=R

i.e., the constant C1 from (25) is uniquely determined by the equality

C1 =
−M(ū)|r=R

Rω(1 + ω2 + ωR−1)
· (30)

We do not use in this approach series, small denominators etc., but we do not dis-
cuss the problem of the convergence of the series (22). The restriction in working
in Hölder classes in r are weaker than the restrictions imposed on the power series
in r. We do not enter into technical details here.
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Abstract. Strangely enough (in view of the long time since their original
discovery) the description of the Delaunay surfaces via the Weierstrassian
functions is absent in the literature. Here we have filled this gap by providing
this missing explicit parameterization along with some comments about the
alternative parameterization in terms of elliptic integrals.

1. Delaunay Surfaces

Almost two centuries ago the French mathematician Delaunay [3] has classified
all surfaces of revolution in R3 with a constant mean curvature. The respective
(and exhaustive) list includes planes, cylinders, spheres, catenoids, unduloids and
nodoids. In an Appendix to that paper Sturm characterized these surfaces variation-

Cylinder

Circle

Sphere

Line Segment

Catenoid

Parabola

Und�loid

Ellipse

Nodoid

Hyperbola

Figure 1: The profile curves of the Delaunay’s surfaces obtained by rolling the
conics listed below them.
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ally and their profile curves (meridians) as the traces of the foci of non-degenerated
conics rolling along a line in the plane (cf Fig.1).
We refer to the book by D’Arcy Thompson [10, Chapter 3] for a nice essay on the
appearance of these surfaces in nature and to Eells [4] for a clear exposition and
pointing out some deep connections with problems in geometry and mechanics.
For the sake of completeness we present here some well-known results about reg-
ular surfaces of revolution. First of all, we fix an orthonormal basis in R3 and
assume that the x-axis coincides with the axis of revolution and that the profile
curve z = z(x) specifying the meridional section of the Delaunay surface lies in
the XOZ plane. In these settings any point on our surface of revolution is given
by the vector-valued function

x = (x, z(x) cos v, z(x) sin v), x ∈ R, v ∈ [0, 2π).

By making use of the above parameterization and the machinery of the classical
differential geometry (cf [9]), one can easily calculate the first and the second
fundamental forms and after that the two principle curvatures. Namely, one obtains
the so called meridional

κµ = − z′′(x)

(1 + z′(x)2)3/2

and parallel

κπ =
1

z(x)
√

1 + z′(x)2

curvatures of the surface, where z′(x) ≡ dz/dx. By these, the mean (meaning
average) curvature H of the surfaces is found to be

H :=
1

2
(κµ + κπ) =

−z(x)z′′(x) + z′(x)2 + 1

2z(x) (1 + z′(x)2)3/2
· (1)

The above expression is the starting point for all considerations to follow. Be-
fore that we will mention that a few alternative parameterizations of the Delaunay
surfaces can be found in [5, 7, 8] and [2].
By the very definition it is clear that the axially-symmetric surfaces could have a
constant mean curvature which is either negative, zero or positive. Let us consider
first the case of the surfaces with a zero mean curvature. Imposing this condition
on the expression for H in (1) leads to the equation

z(x)z′′(x)− z′(x)2 − 1 = 0. (2)

In order to solve it, let us notice that the independent variable is not present in
equation (2) and therefore it can be reduced to the first order equation. Assuming
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that the smooth inverse function x = x(z) exists, this can be achieved by the sub-
stitution z′(x(z)) = ϕ(z) which implies also the identity z′′ = ϕϕ′ and therefore
we end up with the equation

zϕ(z)ϕ′(z)− ϕ2(z)− 1 = 0.

Being an equation with separable variables it is not a problem to solve it and its
solution can be written down as√

1 + ϕ2(z) = λz, λ = const.

Going back to the original variables one easily gets the sought solution of the initial
equation (2) in the form

z(x) = λ cosh(
x

λ
).

The so obtained curve can be immediately recognized as a catenary while the gen-
erated axially-symmetric surface as a catenoid (cf [9]).
The remaining two cases of surfaces with positive, respectively negative mean cur-
vatures will be considered in parallel and following the tradition (cf [3]) we will
assume that H = ± 1

2a and a > 0. Elaborating a little bit further the expression for
H obtained in (1) one can see that it could be rewritten in the form

2az(x)√
1 + z′(x)2

± z(x)2 = const. (3)

Let us consider first the case when the constant on the right-hand side of the above
equation is zero. Then, it is not difficult to see that the solution of (3) is either a
line that is parallel to the symmetry axis or the circle

x2 + z2 = 4a2.

When rotated they generate respectively a cylinder and a sphere, which are other
representatives of the class of the surfaces under consideration.
So, from now on we will assume that the constant on the right-hand side of (3)
is different from zero and for definiteness we will denote it by ±b2 in order to
distinguish the strictly positive and negative cases. It is not hard to see also that in
these cases the differential equation (3) can be rewritten in the form

dx

dz
=

∓z2 − b2√
4a2z2 − (z2 ± b2)2

· (4)

As was shown by Sturm in the Appendix to Delaunay’s paper [3] (see also [9])
this equation describes the roulette of an ellipse, the undulary, and the roulette of a
hyperbola, the nodary, for the upper, respectively the lower sign.
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2. Undulary, Nodary and Weierstrassian Functions

In order to parameterize the undulary and the nodary, the roulettes introdused in
the preceding section, we recast the equation (4) in a system of two equations

dx

du
= ∓z2 − b2

(5)
dz

du
=

√
−z4 + 2(2a2 ∓ b2)z2 − b4

where u ∈ R is a new variable, a parameter of the roulette. The second one of these
two equations is directly solvable in elliptic functions by inverting the integral

u+ C±
1 =

z∫
c

dτ√
−τ4 + 2(2a2 ∓ b2)τ2 − b4

(6)

where c is an arbitrary root of the polynomial

f(τ) = −τ4 + 2(2a2 ∓ b2)τ2 − b4 (7)

and C±
1 = const. Here and henceforth the upper indexes plus and minus refer to

the undulary and the nodary, respectively.
As it is easily seen, for a > |b| > 0, all roots of the polynomial f(τ) are real
numbers and can be written explicitly, namely

τ1 = τ±1 = −a−
√

a2 ∓ b2, τ2 = τ±2 = −a+
√

a2 ∓ b2

τ3 = τ±3 = a−
√
a2 ∓ b2, τ4 = τ±4 = a+

√
a2 ∓ b2.

As lower limits c in the integrals (6) we choose the respective greatest roots of the
polynomial (7), i.e.,

c = τ4 = τ±4 = a+
√

a2 ∓ b2.

By making two successive substitutions we remove the quartic and the quadratic
terms in the polynomial [11]. At first we write

τ =
1 + ct

t
, z =

1 + cξ

ξ

to obtain

u+ C±
1 =

∞∫
ξ

dt√
(8a2c∓ 4b2c− 4c3)t3 + (4a2 ∓ 2b2 − 6c2)t2 − 4ct− 1

·

For the second substitution we take

t =
6s− 2a2 ± b2 + 3c2

12a2c∓ 6b2c− 6c3
, ξ =

6η − 2a2 ± b2 + 3c2

12a2c∓ 6b2c− 6c3
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so that we arrive at the quadrature in the Weierstrassian form

u+ C±
1 =

∞∫
η

ds√
4s3 − g2s− g3

where

g2 = g±2 =
4

3
(a4∓ a2b2+ b4), g3 = g±3 = − 4

27
(2a6∓ 3a4b2− 3a2b4± 2b6)

are the so called invariants of f(τ). Hence, we have the Weierstrassian elliptic
℘-function [11]

η = ℘(u+ C±
1 ) ≡ ℘(u+ C±

1 ; g2, g3)

and returning back to the original variables we can write finally the solutions

z±(u) =
c
(
6℘(u+ C±

1 ) + 10a2 ∓ 5b2 − 3c2
)

6℘(u+ C±
1 )− 2a2 ± b2 + 3c2

· (8)

Now, we can solve by direct integration the first equation in (5) which produces

x±(u) = 2c2(∓2a2 + b2 ± c2)J1(u+ C±
1 )

(9)

∓c2(∓2a2 + b2 ± c2)2J2(u+ C±
1 )− (b2 ± c2)u+ C±

2

where we have made use of the integrals (cf [1, 6])

Jk(u) =

∫
du

[℘(u)− ℘(̊u)]k
, k = 1, 2

that can be expressed in terms of the complete set of Weierstrassian functions ℘(u),
σ(u) and ζ(u)

J1(u) =
1

℘′(̊u)

(
2ζ (̊u)u+ ln

σ(u− ů)

σ(u+ ů)

)
J2(u) = − 1

℘′2 (̊u)

(
℘′′(̊u)J1(u) + 2℘(̊u)u+ ζ(u− ů) + ζ(u+ ů)

)
.

Here ů denotes the argument of ℘(·) which produces the value 1
6(2a

2 ∓ b2 − 3c2),
C±
2 = const, and ℘′(̊u) ≡ d℘(u)/du|u=ů

, etc. Thus, we obtain the profile curves
of the unduloids and the nodoids, i.e., the undulary and the nodary, parameterized
as specified by the equations (8) and (9) in terms of the Weierstrassian functions
(see Fig. 2 and Fig. 3).
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Figure 2: An open part of the unduloid (right) and its profile curve (left) generated
by formulas (8) and (9) and parameters r = 6, R = 25.

3. Alternative Parameterization and Mathematicar

Another parameterization of the profile curves of the considered two types of De-
launay surfaces, the undulary and the nodary, is ensured by the ordinary circular
sine-function and the elliptic integrals of the first F (·, k) and second kind E(·, k)
(more details for the unduloids can be found in [5])

x±(u) = ± rF
(µu

2
− π

4
, k

)
+RE

(µu
2

− π

4
, k

)
(10)

z±(u) = z(u) =
√

m sinµu+ n

where

µ =
2

R+ r
, k2 =

R2 − r2

R2
, m =

R2 − r2

2
, n =

R2 + r2

2
·

0.05 0.10 0.15 0.20

-0.10

-0.05

0.05

0.10

Figure 3: An open part of the nodoid (right) and its profile curve (left) generated
by formulas (8) and (9) and parameters r = 0.03, R = 0.13.

The two parameters r and R which appear in the above formulas are positive, i.e.,
r > 0, R > 0, and it is assumed that R > r. A closer inspection of the formulas
presented in (10) shows that these parameters have a simple geometrical meaning –
they are equal to the minimum and the maximum of z(x), i.e., zmin = r, zmax = R.
From (4) we observe also that each one of the four roots of the polynomial coincide
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with either ±zmin or ±zmax. As a result we can deduce

a =
R± r

2
, b = ±

√
Rr.

Using the computer program Mathematicar, we have compared the graphs of
undularies and nodaries, obtained by the above two parameterizations (8)-(9) and
(10) for different values of r = zmin and R = zmax. In order to be ensured
identical initial conditions, x±(0) = 0, z±(0) = zmax, the following choices for
the integration constants were made: for the undulary

C+
1 = −4ω, C+

2 = 4(b2 + c2)ω

and for the nodary, C−
1 = C−

2 = 0, where ω is the real-valued half-period of
the ℘-function. The result of the full coincidence of the graphs will be discussed
elsewhere.

References

[1] Abramowitz M. and Stegun I. (Eds), Handbook of Mathematical Functions, Dover,
New York 1972.

[2] Bendito E., Bowick M. and Medina A., A Natural Parameterization of the Roulettes
of the Conics Generating the Delaunay Surfaces, J. Geom. Symmetry Phys. 33 (2014)
27-45.

[3] Delaunay C., Sur la surface de revolution dont la courbure moyenne est constante, J.
Math. Pures et Appliquées 6 (1841) 309 – 320.

[4] Eells J., The Surfaces of Delaunay, Math. Intelligencer 9 (1987) 53–57.
[5] Hadzhilazova M., Mladenov I. and Oprea J., Unduloids and Their Geometry, Arch.

Mathematicum 43 (2007) 417 – 429.
[6] Jahnke E., Emde F. and Lösch F., Tafeln Höherer Funktionen, Teubner, Stuttgart

1960.
[7] Mladenov I., New Solutions of the Shape Equation, Eur. Phys. J. B 29 (2002) 327-

330.
[8] Mladenov I., Delaunay Surfaces Revisited, C. R. Bulg. Acad. Sci. 55 (2002) 19-24.
[9] Oprea J., Differential Geometry and its Applications, Mathematical Association of

America, Washington D.C. 2007.
[10] Thompson D., On Growth and Form, Cambridge University Press, Cambridge 1961.
[11] Whittaker E. and Watson G., A Course of Modern Analysis, Cambridge University

Press, Cambridge 1927.



International Conference on Integrability
Recursion Operators and Soliton Interactions
29-31 August 2012, Sofia, Bulgaria
B. Aneva, G. Grahovski
R. Ivanov and D. Mladenov, Eds
Avangard Prima, Sofia 2014, pp 225–234

MAPPING BETWEEN NONLINEAR SCHRÖDINGER
EQUATIONS WITH REAL AND COMPLEX POTENTIALS∗

MARIO SALERNO

Dipartimento di Fisica “E.R. Caianiello” and INFN, Sezione di Napoli-Gruppo
Collegato di Salerno, Università di Salerno, via Giovanni Paolo II, Stecca 8-9
84084 Fisciano (SA), Italy

Abstract. A mapping between the stationary solutions of nonlinear Schrödinger
equations with real and complex potentials is constructed and a set of exact
solutions with real energies are obtained for a large class of complex po-
tentials. As specific examples we consider the case of dissipative periodic
soliton solutions of the nonlinear Schrödinger equation with complex poten-
tial.

1. Introduction

Nonlinear wave phenomena with time evolutions governed by non hermitian Hamil-
tonians are presently attracting a great interest both from the theoretical and the
applicative point of view. The non hermiticity is in general due to the presence
of a complex potential in the Hamiltonian accounting for typical dissipative and
amplification effects met in classical and quantum contexts [5, 12]. In particular,
dissipative solitons [4] of the nonlinear Schrödinger (NLS) equation with peri-
odic complex potentials have been extensively investigated during the past years
in connections with the propagation of light in nonlinear optical fibers with peri-
odic modulations of the complex refractive index [13,18]. Recently similar studies
were done for matter wave solitons of Bose-Einstein condensates (BEC) trapped
in absorbing optical lattices [1, 7] and in the presence of three body interatomic
interactions [3]. In the linear context, the recent discovery [6] that the Schrödinger
eigenvalue problem with complex potentials that are invariant under the combined
parity and time reversal symmetry (so called PT -potentials), may have fully real

∗Reprinted from J. Geom. Symmetry Phys. 32 (2013) 25–35.
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spectrum, has raised interest also in view of possible connection with the theory
of quantum dissipative systems [10]. Complex potentials with PT -symmetry are
presently investigated in nonlinear optics [11] where it has been demonstrated that
nonlinear media with linear damping and amplifications that are PT -symmetric
can support stable stationary localized and periodic states [14]. Also, quite re-
cently, physical systems with PT -symmetry have been successfully implemented
in real experiments [9, 15, 17]. Solutions of the NLS equation with a complex po-
tential which belong to the real part of the spectrum (real energies or real chemical
potentials) can exist, however, for generic complex potentials and it is therefore of
interest to characterize them in general, independently from the PT -symmetry.
The aim of the present paper is to show how one can systematically construct sta-
tionary solutions of the complex nonlinear Schrödinger equation via a mapping
between real and complex NLS equations. The problem is formulated in terms of
a nonlocal eigenvalue problem which involves only real potentials, whose eigen-
functions and eigenvalues fix amplitudes and energies of the stationary solutions of
the complex NLS equation, respectively. The complex potentials and the phases of
the solutions are also determined self-consistently through the mapping. To illus-
trate our approach we discuss the case of the NLS equation with different complex
potentials for which we construct periodic dissipative solitons in the form of ellip-
tic functions.
The paper is organized as follows. In Section 2 we introduce model equations and
illustrate the mapping used to determine the solutions. In Section 3 we show how
to construct exact solutions of the NLS with periodic complex potentials while in
the last section the main results of the paper will be briefly summarized.

2. Model Equations and Mapping

The model equation we consider is the NLS equation with real and complex po-
tentials both of linear and nonlinear types, e.g.

iψt = −
1

2
ψxx + (Vl(x) + iWl(x))ψ + (σ + Vnl(x) + iWnl(x))|ψ|

2ψ. (1)

The case of the linear Schrodinger equation (e.g. σ = Vnl = Wnl = 0) can be
used as an example of quantum dissipative system. In the nonlinear case the above
equation can appear in connection with several interesting phenomena including
light propagation in photonic crystals and Bose-Einstein condensates. Due to the
possibility of different physical applications we shall keep equation (1) in normal-
ized form, looking for stationary solutions of the type

ψ(x, t) = A(x)eiθ(x)e−iωt (2)
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with the amplitudeA(x) and phase θ(x) as real functions. Substituting this expres-
sion into equation(1), we obtain the system of equations

ωA+
1

2
Axx − σA3 −

A

2
(θx)

2 − VlA− VnlA
3 = 0 (3)

1

2
Aθxx +Axθx −WlA−WnlA

3 = 0. (4)

These equations can be easily separated. In this respect notice that by multiplying
equation (4) by A and integrating it twice one obtains

1

2
θ(x) = B2 +

∫ x

−∞

B1 + F (y)

A2(y)
dy (5)

with

F (y) =

∫ y

−∞

[

Wl(z) +Wnl(z)A
2(z)

]

A2(z)dz (6)

andB1, B2 integration constants. By substituting equation (5) into equation (3) we
obtain the following nonlinear eigenvalue problem for the real amplitude A

{

−
1

2

∂

∂x2
+ Vl + (σ + Vnl)A

2 + 2

(

F (x)

A2

)2
}

A = ωA (7)

where the integration constantsB1, B2, have been fixed to zero for simplicity. Note
that for stationary solutions equation (7) is completely equivalent to equation (1)
in the sense that any solution of (7) gives a stationary solution of (1) with the
phase fixed by (5). Also note that the dependence on the complex potentials in
the eigenvalue problems comes through the function F and for an arbitrary F (x)
(e.g. arbitrary complex potentials) the problem can become singular. It is possible,
however, to construct potentialsWl andWnl (e.g. functions F ) so that the solutions
of (7) are regular. This establishes a mapping between stationary solutions of the
NLS equation with real potentials and stationary solution of equation (1) with the
phase given by (5). In this respect, one can take F in general to be an analytical
function of A2 and derivatives e.g. F (x) ≡ F (A2, (A2)x, ...). In the simplest case
F can be taken of the form

F (x) =
1

2
CnA

n+2, n = 0, 1, 2... (8)

with Cn constants to be determined. Equation (7) then reduces to the following
NLS real eigenvalue problem

{

−
1

2

∂

∂x2
+ Vl + (σ + Vnl)A

2 +
C2
n

2
A2n

}

A = ωA (9)

which can be solved analytically for particular forms of the potentials Vl, Vnl, or
numerically with high accuracy (using for example the self-consistent method dis-
cussed in [16]) for generic real potentials. In the following we therefore assume
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that the real amplitudes A and frequencies ω for given Vl and Vnl are exactly ob-
tained from (9), either analytically or numerically.
On the other hand from equation (8) one can characterize the complex potentials
which support such solutions. Using equation (6) we have indeed that equation (8)
is satisfied if the amplitude A is related to Wl and Wnl by the relation

Wl +WnlA
2 = Cn

(

n+ 2

2n

)

dAn

dx
(10)

and from equations (5), (8), one gets that the phase is given by

θ(x) = Cn

∫ x

−∞

Andy. (11)

Note that in this case equation (10) allows to relate the constantCn to the amplitude
of the solution, A0, and the amplitudes W0l, W0nl, of the linear and nonlinear
complex potentials, respectively. In particular, for the case Wnl = 0 we have that

Cn =
2

n+ 2

W0l

An
0

, W0nl = 0 (12)

while for Wl = 0 one obtains

Cn =
2

n+ 2

W0nl

An−2
0

, W0l = 0. (13)

It is worth to note that while the case n = 1 leads to a pure cubic NLS eigenvalue
problem, the case n > 1 introduces higher order nonlinearities in equation (9)
which can however be eliminated by redefying the linear real potential as

Vl = Ṽl −
Cn

2

2
A2n (14)

or the nonlinear real potential as

Vnl = Ṽnl −
Cn

2

2
A2n−2 (15)

(or a combination of both). Also notice that equations (2), (10) - (13) allow to map
solutions of the real eigenvalue problem (9) into solutions of the NLS equation (1)
with the corresponding complex potentials determined as in (10). It is clear that
this approach can be extended to functions of the type

F (x) =
1

2

k
∑

n=0

CnA
n+2, k = 0, 1, 2 . . . (16)
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In this case coefficientCn are self-consistently determined from the real eigenvalue
problem







−
1

2

∂

∂x2
+ Vl + (σ + Vnl)A

2 +
1

2

(

∑

n

CnA
n

)2






A = ωA (17)

and complex potentials and phase are given by

Wl +WnlA
2 =

1

A2

dF

dx
(18)

θ(x) =
∑

n

Cn

∫ x

−∞

Andy. (19)

Note that the sum in equation (16) can include infinite terms and to have a map
between real and complex NLS equations it is necessary to subtract higher order
nonlinearities from the real linear and nonlinear potentials as done in equations
(14)-(15). Finally we remark that if the functions Ax/A,Axx/A, ... are bounded,
the expression (16) can be further generalized as

F (x) =
k
∑

n,m

Cn,m

dmAn+2

dxm
(20)

with Cn,m suitable constants and with the complex potentials determined as (18).
In all these cases a map between solutions of the real eigenvalue problem (17) and
solutions of the NLS equation (1) is constructed.
The mapping guarantees that the constructed solutions always have real energies
and may be therefore of physical interest. We finally remark that a similar ap-
proach based on a priori fixing of the solution and a posteriori determination of
the complex potential, has been considered also in [2, 8], although not in terms of
a mapping between stationary solutions of NLS equations. In the following we
illustrate how the mapping works on some specific example.

3. Nonlinear Schrödinger Equation with Complex Potentials

3.1. Case n = 1

Let us consider first the simplest ansatz (8) with n = 1. We fix the nonlinearity to
be attractive (σ < 0) and restrict to linear complex potentials (i.e.,Wnl = Vnl = 0)
and with linear potential of the form Vl = V0l cn2(x, k). In this case the real
eigenvalue problem (9)

[

−
1

2

∂

∂x2
+ V0l cn(x, k)2 +

(

σ +
C2
1

2

)

A2

]

A = ωA (21)
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admits the following exact solutions in terms of elliptic functions

a) A(x) = A0 cn(x, k)

A0 = ±

√

2(k2 + V0l)

2|σ| − C2
1

, ω =
1− 2k2

2

(22)

b) A(x) = A0 sn(x, k)

A0 = ±

√

2(k2 + V0l)

C2
1 − 2|σ|

, ω =
1 + k2

2
+ V0l

(23)

c) A(x) = A0 dn(x, k)

A0 = ±
1

k

√

2(k2 + V0l)

2|σ| − C2
1

, ω =
k2

2
− 1 + V0l

(

1−
1

k2

)

.
(24)

Similar solutions can be constructed for the case of a repulsive nonlinearity σ > 0
with linear potentials of the form Vl = V0l sn2(x, k). In this case we have

d) A(x) = A0 cn(x, k)

A0 = ±

√

2(V0l − k2)

C2
1 + 2σ

, ω =
1− 2k2

2
+ V0l

(25)

e) A(x) = A0 sn(x, k)

A0 = ±

√

2(k2 − V0l)

C2
1 + 2σ

, ω =
1 + k2

2

(26)

f) A(x) = A0 dn(x, k)

A0 = ±
1

k

√

V0l − k2

C2
1 + 2σ

, ω =
k2

2
− 1 +

V0l
k2

·
(27)

Using the above mapping we can readily construct the stationary solutions of the
corresponding complex NLS with linear complex potentials given by

Wl =
3

2
C1Ax, C1 =

2

3

W0l

A0
(28)
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and with the phase given by θ(x) = C1

∫ x

−∞
A(y)dy. Thus, for example, from the

solution a) we get

A = A0cn(x, k), Vl(x) = V0l cn2(x, k)

A0 =

√

9 (k2 + V0l) + 2W0l
2

3
√

|σ|
, ω =

1− 2k2

2

Wl = −W0l sn(x)dn(x), θ(x) =
2W0l

3k
arccos(dn(x)).

(29)

In similar manner one proceeds with the other solutions above. It is also clear that
exact solutions of this type can be constructed also for other types of linear elliptic
potentials (we omit them for brevity).

3.2. Case n = 2

As a further application of the ansatz (8) we consider the case n = 2 for which the
mappings involves higher order nonlinearities. We assume as before that Vnl =
Wnl = 0. In order to balance the quintic nonlinearity in equation (9), the potential
Vl must be taken as in equation (14). We take Ṽl = V0l cn 2(x, k) and consider a
solution of the formA(x) = A0 cn(x, k). One can then check that this is a solution
of (9) with

Vl(x) = V0lcn2(x, k)−
C2
2

2
A4

0 cn4(x, k) (30)

if A2
0 = V0l + k2 and ω = 1−2k2

2 · From the mapping we then have that

C2 =
W0l

2A2
0

=
W0l

2(V0 + k2)

Wl(x) = 2C2AAx = −W0l cn(x)sn(x)dn(x) (31)

and the phase is

θ(x) = x−
x

k2
+

1− k2 + k2cn2(x, k)
k2dn2(x, k)

E(am(x, k), k). (32)

As a further example of n = 2 we consider the case of pure nonlinear optical
lattices, i.e., Vl = Wl = 0. Fixing Ṽnl = 0 and looking for solutions of the type
A(x) = A0cn(x, k), we have from equation (15) that that

Vnl(x) = −
C2
2

2
A2

0 cn2(x, k). (33)
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with C2 fixed according to equation (13) as C2 = W0nl/2. One can easily check
that this is indeed a solution of the eigenvalue problem (9) if

ω =
1

2
− k2, A0 =

k
√

|σ|
(34)

(we consider σ < 0). From the mapping we have that this is also a solution of the
NLS with the complex part of the nonlinear potential fixed according to equation
(10) as

Wnl(x) = 2C2
Ax

A
= −W0nl

sn(x, k)dn(x, k)
cn(x, k)

· (35)

For the cases n > 2 one can proceed in similar manner.

3.3. General Case

Let us now consider an example with the more general ansatz (16). To this regard
we take F (x) = 1

2(C0 + C2A
2)A2 and look for solutions of the form A(x) =

A0dn(x, k). Let us fix the linear potentials as Vl = Wl = 0 and the real nonlinear
potential as Vnl = V0nl − α2

2A
2 with V0nl a constant and with αn = Cn√

2
, n = 0, 2

(notice that we fixed all coefficients for n 6= 0, 2, equal to zero). By substituting
these expressions into the real eigenvalue problem we find that A(x) is indeed a
solution if

ω = α2
0 +

k2

2
− 1, α0 = −

1 +A2
0(σ + V0nl)

2A2
0α2

· (36)

Thus, for example, if we fix V0nl = 2/k2, α2 = −1/k and consider σ = 1
(repulsive interactions), we have

Vnl =
2− dn2(x, k)

k2
=

1

k2
+ sn2(x, k)). (37)

From equation (36) we have

ω = σ − 1 +
1

A2
0

+
k2
[

(1 + 2σA2
0) + (σ2 + 2)A4

0

]

4A4
0

+
1

k2

α0 =
1

k
+
k(1 + σA2

0)

2A2
0

(38)

and from (16) we get the function F as

F (x) =
1
√
2
(α0 + α2A

2)A2

=
A2

0dn2(x, k)
2
√
2k

[

2 +
k2

A2
0

(1 + σA2
0)− 2A2

0dn2(x, k)
]

.
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Substituting into equations (18) we finally get the complex potential as

Wnl =
√
2k

sn(x, k)cn(x, k)
dn3(x, k)

×

[

2−
1

A2
0

−
k2

2A4
0

(1 + σA2
0)− 2k2sn2(x, k)

]

. (39)

The phase of the solution can be readily obtained from equation (19). Notice that
in the case σ = 1, A0 = 1, this solution coincides with the one derived in [2]
with a slightly different approach. We remark that the above solutions of the com-
plex NLS equations not only have real energies but are also stable (not shown for
brevity) under time evolution.

4. Conclusions

In conclusion we have demonstrated the possibility to construct stationary solu-
tions of the linear and nonlinear Schrodinger equation with complex potentials via
a mapping with stationary solutions of the NLS equation with suitable real po-
tentials. In particular we showed that by means of this mapping it is possible to
construct sets of exact solutions with real energies for different types of complex
potentials. The presented approach can be applied to other types equations, includ-
ing the linear Schrödinger equation describing quantum dissipative oscillators, and
the NLS equation with arbitrary higher order nonlinearities, as it will be discussed
elsewhere.
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Abstract. The analysis of some exact solutions of Einstein equations, de-
scribing gravitational waves produced by light, shows that there can be re-
pulsion between light beams. This is due only to the spin-1 character of the
solutions and not to the introduction of other inputs external to General Rela-
tivity. Cosmological relativistic jets give an example of a such phenomenon.

1. Introduction

In this paper we study the possibility of a repulsive behavior in gravitational inter-
action, in particular between two light beams, due to the spin properties of some
exact solutions of Einstein equations. More precisely we observe that there are
exact solutions with spin-1 which describe gravitational waves produced by light
sources and give rise to a repulsive behavior. The arguments which actually at-
tribute spin-2 to gravitational waves, relies on the assumption that the solutions be
Fourier expandable and, as a consequence have no spin-1 components. However
there exist [7, 23, 31, 32] (see Sections 2 and 3) physically meaningful solutions of
Einstein equations which although not Fourier expandable are nonetheless finite
energy solutions. An application of this result (see Section 4) is concerned with
the numerical data related to cosmological relativistic jets.
Section 2 describes a family of exact solutions of Einstein equations, represent-
ing gravitational waves generated by a light beam or, more generally, by massless
particles, and their physical properties.

∗Reprinted from J. Geom. Symmetry Phys. 32 (2013) 37–50.
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Section 3 containes some historical remarks and with the Tolman, Ehrenfest, Podol-
sky [33] and Wheeler [36] results on gravitational repulsive behavior.
Section 4 deals with cosmological relativistic jets.

2. The Gravitational Interaction of Light

2.1. Geometric Properties

In previous papers [7–10, 27–29, 34, 35] a family of exact solutions g of Einstein
field equations, representing the gravitational wave generated by a beam of light,
has been explicitly written

g = 2f(dx2 + dy2) + µ
[

(w (x, y)− 2q)dp2 + 2dpdq
]

(1)

where µ(x, y) = AΦ(x, y) + B (with Φ(x, y) a harmonic function and A, B
numerical constants), f(x, y) = (∇Φ)2

√

|µ|/µ, and w (x, y) is a solution of the
Euler-Darboux-Poisson equation

∆w + (∂x ln |µ|) ∂xw + (∂y ln |µ|) ∂yw = ρ

where Tµν = ρδµ3δν3 is representing the energy-momentum tensor and ∆ is the
Laplace operator in the (x, y)−plane.
Previous metrics are invariant for the non Abelian Lie agebra G2 of Killing fields

X =
∂

∂p
, Y = ep

∂

∂q

with

[X,Y ] = Y, g (Y, Y ) = 0

generating a two-dimensional distribution D whose orthogonal distribution D⊥ is
integrable.
In the particular case s = 1, f = 1/2 and µ = 1, the above family is locally
diffeomorphic to a subclass of Peres solutions and, by using the transformation

p = ln |u| , q = uv

can be written in the form

g = dx2 + dy2 + 2dudv +
w

u2
du2 (2)

with ∆w(x, y) = ρ, and has the Lorentz invariant Kerr-Schild form

gµν = ηµν + V kµkν , kµk
µ = 0.
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2.2. Physical Properties

2.2.1. Wave Character
The wave character and the polarization of these gravitational fields has been ana-
lyzed in many ways. For example, the Zel’manov criterion [37] was used to show
that these are gravitational waves and the propagation direction was determined by
using the Landau-Lifshitz pseudo-tensor. However, the algebraic Pirani criterion
is easier to handle since it determines both the wave character of the solutions and
the propagation direction at once. Moreover, it has been shown that, in the vac-
uum case, the two methods agree. To use this criterion, the Weyl scalars must be
evaluated according to Petrov classification [24].
In the Newmann-Penrose formulation [22] of Petrov classification, we need a
tetrad basis with two real null vector fields and two real spacelike (or two complex
null) vector fields. Then, if the metric belongs to type N of the Petrov classifica-
tion, it is a gravitational wave propagating along one of the two real null vector
fields (Pirani criterion). Let us observe that ∂x and ∂y are spacelike real vector
fields and ∂v is a null real vector but ∂u is not. With the transformation

x 7→ x, y 7→ y, u 7→ u, v 7→ v +
w(x, y)

2u

whose Jacobian is equal to one, the metric (2) becomes

g = dx2 + dy2 + 2dudv + dw(x, y)d ln |u|. (3)

Since ∂x and ∂y are spacelike real vector fields and ∂u and ∂v are null real vector
fields, the above set of coordinates is the right one to apply for the Pirani’s criterion.
Since the only nonvanishing components of the Riemann tensor, corresponding to
the metric (3), are

Riuju =
2

u3
∂2
ijw(x, y), i, j = x, y

these gravitational fields belong to Petrov type N [37]. Then, according to the
Pirani’s criterion, previous metric does indeed represent a gravitational wave prop-
agating along the null vector field ∂u.
It is well known that linearized gravitational waves can be characterized entirely in
terms of the linearized and gauge invariant Weyl scalars. The non vanishing Weyl
scalar of a typical spin-2 gravitational wave is Ψ4. Metrics (3) also have as non
vanishing Weyl scalar Ψ4.

2.2.2. Spin
Besides being an exact solution of the Einstein equations, the metric (3) is (for
w/u2 � 1), also a solution of linearized Einstein equations, thus representing a
perturbation of Minkowski metric η = dx2+dy2+2dudv = dx2+dy2+dz2−dt2
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(where u = (z − t)/
√
2, v = (z + t)/

√
2) with the perturbation, generated by a

light beam or by a photon wave packet moving along the z-axis, given by

h = dw(x, y)d ln |z − t|

whose non vanishing components are

h0,1 = −h13 = −
wx

(z − t)
, h0,2 = −h23 = −

wy

(z − t)
·

2.2.3. The Energy-Momentum Tensor

A transparent method to determine the spin of a gravitational wave is to look at its
physical degrees of freedom, i.e., the components which contribute to the energy
[11]. One should use the Landau-Lifshitz (pseudo)-tensor tµν which, in the asymp-
totically flat case, agrees with the Bondi flux at infinity [9]. It is worth to remark
that the canonical and the Landau-Lifchitz energy-momentum pseudo-tensors are
true tensors for Lorentz transformations. Thus, any Lorentz transformation will
preserve the form of these tensors and this allows to perform the analysis accord-
ing to the Dirac procedure. A globally square integrable solution hµν of the wave
equation is a function of r = kµx

µ with kµk
µ = 0.

With the choice kµ = (1, 0, 0,−1), we get for the energy density t00 and the energy
momentum t30 the following result

16πt00 =
1

4
(u11 − u22)

2 + u212, t00 = t30

where uµν ≡ dhµν/dr. Thus, the physical components which contribute to the
energy density are h11 − h22 and h12. Following the analysis of Dirac, we see that
they are eigenvectors of the infinitesimal rotation generator R, in the plane x− y,
belonging to the eigenvalues ±2i. The components of hµν which contribute to the
energy thus correspond to spin−2.

In the case of the prototype of spin-1 gravitational waves (3), both Landau-Lifchitz
energy-momentum pseudo-tensor and Bel-Robinson energy-momentum tensor [3,
4, 26] single out the same wave components and we have

τ00 ∼ c1(h0x,x)
2 + c2(h0y,x)

2, t00 = t30

where c1 and c2 are constants, so that the physical components of the metric are h0x

and h0y. Following the previous analysis one can see that these two components
are eigenvectors of iR belonging to the eigenvalues ±1. In other words, metrics
(3), which are not pure gauge since the Riemann tensor is not vanishing, represent
spin-1 gravitational waves propagating along the z−axis at light velocity.
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2.2.4. Summarizing
Globally square integrable spin-1 gravitational waves propagating on a flat back-
ground are always pure gauge and spin−1 gravitational waves which are not glob-
ally square integrable are not pure gauge.
It is always possible to write metric (3) in an apparently transverse gauge [31] but
since these coordinates are no more harmonic this transformation is not compatible
with the linearization procedure.
What truly distinguishes spin-1 from spin-2 gravitational waves is the fact that
in the spin-1 case the Weyl scalar has a non trivial dependence on the transverse
coordinates (x, y) due to the presence of the harmonic function. This could led
to observable effects on length scales larger than the characteristic length scale
where the harmonic function changes significantly.
Indeed, the Weyl scalar enters in the geodesic deviation equation implying a non
standard deformation of a ring of test particles breaking the invariance under of π
rotation around the propagation direction. Eventually, one can say that there should
be distinguishable effects of spin-1 waves at suitably large length scales.
It is also worth to stress that the results of Aichelburg and Sexl, Felber and van
Holten [1,13,17] suggest that the sources of asymptotically flat pp−waves (which
have been interpreted as spin-1 gravitational waves [7, 9]) repel each other. Thus,
in a field theoretical perspective, “pp− gravitons” must have spin-1.

2.3. Gravitoelectrodynamics

Hereafter the spatial part of four-vectors will be denoted in bold and the standard
symbols of three-dimensional vector calculus will be adopted.
Metric (3) can be written in the gravitoelectromagnetic form

g = (2Φ(g) − 1)dt2 − 4(A(g).dr)dt+ (2Φ(g) + 1)dr.dr (4)
where

r = (x, y, z) , 2Φ(g) = h00, 2A
(g)
i = −h0i.

2.3.1. Gravito-Lorentz Gauge
In terms of Φ(g) and A

(g) the harmonic gauge condition reads

∂Φ(g)

∂t
+

1

2
∇ ·A(g) = 0 (5)

and, once the gravitoelectric and gravitomagnetic fields are defined in terms of
g-potentials, as

E
(g) = −∇Φ(g) −

1

2

∂A(g)

∂t
, B

(g) = ∇∧A
(g)
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one finds that the linearized Einstein equations resemble Maxwell equations. Con-
sequently, being the dynamics fully encoded in Maxwell-like equations, this for-
malism describes the physical effects of the vector part of the gravitational field.

2.3.2. Gravito-Faraday Tensor Field
Gravitational waves can be also described in analogy with electromagnetic waves,
the gravitoelectric and the gravitomagnetic components of the metric being

E(g)
µ = F

(g)
µ0 , B(g)µ = −εµ0αβF

(g)
αβ /2

where

F (g)
µν = ∂µA

(g)
ν − ∂νA

(g)
µ , A(g)

µ = −h0µ/2 = (−Φ(g),A(g)).

3. Tolman-Erhenfest-Podolsky Problem

3.1. History

The interest in repulsive gravity, or antigravity as it was usually called, goes back
to the fifty’s [18, 19, 21].
The general point of view was that since gravitational interaction is mediated by
a spin-2 particle, it can only be attractive and thus, to obtain a repulsive behavior,
some other ingredient is required. The idea was then to explore the possibility of
repulsive matter-antimatter gravity, but within the old quantum field theories there
was no room for such a possibility.
The main arguments, reviewed in [21], were of various kinds including violation
of energy conservation and disagreement with experiments of the Eötvös type due
to the effects of antigravity on the vacuum polarization diagrams of atoms.
More recently however, within the context of modern quantum field theories, it
was proven that those arguments were no longer sufficient to exclude repulsive
effects and the interest in antigravity increased again. For example, in [16] it was
shown that in supergravity and string theory, due to dimensional reduction, the
effective four-dimensional theory of gravity may show repulsive aspects because
of the appearance of spin-1 graviphotons.

3.2. Photon-Photon Scattering

Photon-photon scattering can occur through the creation and annihilation of virtual
electron-positron pairs and may even lead to collective photon phenomena. Pho-
tons also interact gravitationally but the gravitational scattering of light by light
has been much less studied.
Purely general relativistic treatments of electromagnetic wave interactions have
been made resulting in exact solutions [14, 15], but these calculations are different
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from pure scattering processes and do not address the interaction at single photon
level.
It is not clear to what extent, calculations of the gravitational cross-section using
QFT methods are consistent with classical GR. First studies go back to Tolman,
Ehrenfest and Podolsky 1931 and, later, to Wheeler 1955 [33, 36] who analysed
the gravitational field of light beams and the corresponding geodesics in the linear
approximation of Einstein equations. They discovered that null rays behave differ-
ently according to whether they propagate parallel or antiparallel to a steady, long,
straight beam of light, but they did not provide a physical explanation of this fact.
Later, Barker, Bathia and Gupta [2], following a previous analysis of Barker, Gupta
and Haracz [6], analyzed in QED the photon-photon interaction through the cre-
ation and annihilation of a virtual graviton in the center-mass system and they
found that the interaction is eight times the “Newtonian” value plus a polarization
dependent repulsive contact interaction and also obtained the gravitational cross
sections for various photon polarization states.
Results of Tolman, Ehrenfest, Podolsky, Wheeler were clarified in part in [12],
in the setting of classical pure General Relativity, using an approach based on a
generalization to null rays of the gravitoelectromagnetic Lorentz force of linearized
gravity.
They also extended the analysis to the realm of exact pp-wave solutions of the
Einstein equations. Later, photon-photon scattering due to self-induced gravita-
tional perturbations on a Minkowski background has been also analyzed by Brodin,
Eriksson and Marklund [5] solving the Einstein-Maxwell system perturbatively to
third order in the field amplitudes and confirming the dependence of differential
gravitational cross section on the photon polarizations.

3.3. Geodesic Motion

The geodesic motion of a massive particle moving with four-velocity vµ = (1, v
¯
),

|v| � 1, in a light beam gravitational field characterized by gravitoelectric E
(g)

and gravitomagnetic B
(g) fields, is determined (at first order in |v|) by the accel-

eration
a
(g) = −E

(g) − 2v ∧B
(g).

The geodesic motion of a massless particle moving with velocity vµ = (1,v),
|v| = 1, in the light beam gravitational field, parallel(anti) to z-axis (vj = ±δj3)
is slightly different

a
(g) = −2

(

E
(g) + v ∧B

(g)
)

.

There are two contributions, one by the light beam, which is the source of gravity,
and the other by the test photon.
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Since the gravitoelectric and gravitomagnetic fields corresponding to our metric
are given by

E
(g) = (wx, wy, 0)/4u

2, B
(g) = (wy,−wx, 0)/4u

2

the ‘gravitational acceleration’ of a massless particle will be

a
(g) = −[wx(1− vz)i+ wy(1− vz)j+ (wxvx + wyvy)k]/2u

2. (6)

The velocity v of a photon is determined by the null geodesics equations

(h− 1)− 2hvz + (h+ 1)v2z = 0

which has two solutions

vz = 1, vz =
h− 1

h+ 1
=

w − u2

w + u2
·

If the photon propagates parallel to the light beam, v = (0, 0, 1), then

a
(g) = 0

and there is not attraction or repulsion (see also [38]).
If the photon does not propagate parallel to the light beam, the velocity will be
v = (h− 1) / (h+ 1) , then

a
(g) = −∇w/2

(

w + u2
)

and the force turns out to be attractive.
Thus, the lack of attraction found by Tolman, Ehrenfest, Podolsky comes out also
from the analysis of the geodesical motion of a massless spin-1 test particle in
the strong gravitational field of the light, neglecting however the gravitational field
generated by that particle. An exhaustive answer could derive only determining the
gravitational field generated by two photons, each one generating spin-1 gravita-
tional waves. However, since helicity seems to play for photons the same role that
charge plays for charged particles, two photons with the same helicity should repel
one another. This repulsion turns out to be very weak and cannot be certainly ob-
served in laboratory but it could play a relevant role at cosmic scale and could give
not trivial contributions to the dark energy. Thus, together with gravitons (spin-2),
one may postulate the existence of graviphotons (spin-1) and graviscalar (spin-0).

4. Relativistic Jets

Relativistic jets are extremely powerful jets of plasma emerging from presumed
massive objects at the centers of some active radio galaxies and quasars. Their
lengths can reach several thousand or even hundreds of thousands of light years.
Among the different types of astrophysical jets, the most energetic ones are po-
tential candidates to give rise to emission of gravitational waves. For example,
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highly relativistic jets should be associated with some sources of gamma ray bursts
(GRBs) [25]. The impact of an ultra relativistic jet over the space-time metric can
be studied starting from the extreme situation where the velocity of the particles in
the beam is assumed to be equal to the velocity of light. The jet is then represented
by a beam of null particles. For a flow of radiation of a null electromagnetic (em)
field along the z-axis, the (em) energy-momentum tensor macroscopic components
Tµν = FµαF

α
ν + 1

4gµνFαβF
αβ reduce to

T00 =
ρ

z − ct
, T03 = T30 = −

ρ

z − ct
, T33 =

ρ

z − ct

where ρ =
(

E2 +B2
)

/2 represents the amplitude of the field, i.e., the density of
radiant energy at point of interest. They are just the components in the coordinates
(t, x, y, z) of the energy-momentum tensor T = ρdu2 of Section 2.
We assume then that the energy density is a constant ρ0 within a certain radius
0 ≤ r =

√

x2 + y2 ≤ r0 and vanishes outside. Thus, the source represents a
cylindrical beam with width r0 and constitutes a simple generalization of a single
null particle.
Introducing back the standard coupling constant of Einstein tensor with matter
energy-momentum tensor, we have

∆w(x, y) =
8πG

c4
ρ. (7)

The cylindrical symmetry implies that w(x, y) will depend only on the distance r
from the beam. A solution w(r) of Poisson equation (7) satisfying the continuity
condition at r = r0 can be easily written as

w(r) =
4πG

c4
ρ0r

2, r ≤ r0 (8)

w(r) =
8πG

c4
ρ0r

2
0

[

ln

(

r

r0

)

+
1

2

]

, r > r0 (9)

or also
w(r) =

4πGρ0
c4

r20W (r) (10)

with W (r) = r2/r20 or W (r) = 1 + ln
(

r
r0

)2
depending on whether r < ro or

r > r0.
Thus, a photon moving antiparallel and external to the beam will experience at the
space-time point (t, x, y, z) a transversal gravitational attraction expressed by

a
(g) (t, x, y, z) = −

16πG

c4
ρ0r

2
0

r

r2 (z − ct)2
(11)

where the speed of light c has been reintroduced and the retardation is automati-
cally accounted for. As a consequence of spin-1 of our wave and of QFT a photon
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moving parallel and external to the beam will experience at the space-time point
(t, x, y, z) a transversal gravitational repulsion given by

a
(g) (t, x, y, z) =

16πG

c4
ρ0r

2
0

r

r2 (z − ct)2
· (12)

For jets which start with a small opening angle θ0 ≤ 10−3 − 10−4 [25], it can be
assumed that the width of the beam remains constant during the first stage of the jet
expansion [20] and, for a beam-length L = cτ ≈ 106 − 107 Km (a typical jet lasts
τ ≈ 10− 100 s), will be of the order of r0 = Lθ0 ≈ 102 − 103 km. The energy is
of the order of E =≈ 1044 − 1045J , so that ρ0 = E/L ≈ 1037 − 1039J/km.
Replacing these values in equation (12) and taking G/c4 ≈ 10−44N−1, we obtain
for the transversal acceleration per unit length

a(g) (t, x, y, z) =
10−5

r2 (z − ct)2
cm−1

where r =
√

x2 + y2 and z are the distances, expressed in cm, between the source
and the point of interest and t the observation time.

Conclusions

Repeating the above calculations for a laser beam in an interferometer of LIGO or
VIRGO type, in the formula above we would get a factor of 10−50 instead of 10−5.
Then, the repulsion (as well as the attraction) turns out to be very weak. However
it could play a relevant role at cosmic scale and could give not trivial contributions
to the dark energy.
At this point, together with gravitons (spin-2), one could postulate the existence
of graviphotons (spin-1) and of graviscalar (spin-0) too. Through coupling to
fermions, they might give forces depending on the barion number. These fields
might give [30] two (or more) Yukawa type terms of different signs, correspond-
ing to repulsive graviphoton exchange and attractive graviscalar exchange (range
� 200m). However, much more work must be done for a better understand of the
role played by the gravitational field of the electromagnetic radiation and/or of null
particles beams in the evolution of the universe.
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Abstract. We present a conservative fully implicit scheme using complex
arithmetic for the Coupled Nonlinear Schrödinger Equations (CNLSE) which
allows us to reduce the computational time fourfold. In this work we inves-
tigate collisions of solitons with no time frequency of the carrier wave in the
initial configuration. We obtain various results numerically and investigate
the role of nonlinear coupling on the quasi-particle dynamics. For nontrivial
but moderate nonlinear coupling parameter, we find that the polarization of
the system changes, but no other effects are present. For moderate and large
values of the nonlinear coupling parameter, additional solitons are created
during the collision of the initial ones. These seem to be new effects, not
reported in the literature.
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1. Introduction

The investigation of soliton supporting systems is of great importance both for the
applications and for the fundamental understanding of the phenomena associated
with propagation of solitons. Recently, elaborate models such as Coupled Nonlin-
ear Schrödinger Equations (CNLSE) appeared in the literature (see, e.g. [6, 8]).
They involve more parameters and have richer phenomenology but, as a rule, are
not fully integrable and require numerical approaches. The non-fully-integrable
models possess as a rule three conservation laws: for (wave) “mass”, (wave) mo-
mentum, and energy and these have to be faithfully represented by the numerical
scheme.

An implicit scheme of Crank-Nicolson type was first proposed for the single NLS
in the extensive numerical treatise [11]. The concept of the internal iterations was
first applied to CNLSE in [4] and extended in [9] in order to ensure the imple-
mentation of the conservation laws on difference level within the round-off error
of the calculations. The CNLSE is investigated numerically also in [5]. Here,
we follow generally the works [4, 9] but focus on a new complex-variable im-
plementation of the conservative scheme. This allows us to invert five-diagonal
matrices (albeit complex-valued) while the real-valued scheme requires the inver-
sion of nine-diagonal matrices [4,9]. To this end, we generalize the computer code
for Gaussian elimination with developed earlier pivoting for real-valued algebraic
systems in [3]. This gives a significant advantage in the efficiency of the algo-
rithm. The numerical validation of the new code includes comparisons with [4, 9]
which show that the complex-numbers implementation of the scheme gives identi-
cal results with the real-numbers codes but is approximately four times as efficient.
Several featuring examples of interacting solitons in CNLSE are elaborated.

2. Coupled Nonlinear Schrödinger Equations

In optics, the most popular model is the cubic Schrödinger equation which de-
scribes the single-mode wave propagation in a fiber [1, 2]. It has the form

iψt + βψxx + α|ψ|2ψ = 0 (1)

where i =
√
−1 and ψ(x, t) is a complex-valued wave function. Depending on

the sign of coefficient α, the localized solutions of equation (1) are either the hy-
perbolic secants (bright solitons) or hyperbolic tangents (dark solitons). Since the
fibers also allow propagation of multiple “orthogonal” modes, a multi-component
version of equation (1) has been actively investigated during the last decade.
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A general form of the Coupled Nonlinear Schrodinger Equations (CNLSE) reads

iψt = βψxx +
[

α1|ψ|
2 + (α1 + 2α2)|φ|

2
]

ψ + γψ + Γφ = 0
(2)

iφt = βφxx +
[

α1|φ|
2 + (α1 + 2α2)|ψ|

2
]

φ+ γφ+ Γψ = 0

where β is the dispersion coefficient and α1 describes the self-focusing of a signal
for pulses in birefringent media. Complex-valued coefficients γ and Γ are respon-
sible for the linear coupling between the two equations. Respectively α2 governs
the nonlinear coupling between the equations. It is interesting to note that when
α2 = 0, the nonlinear coupling is not present despite the fact that “cross-terms”
proportional to α1 appear in the equations. In fact, when γ = Γ = α2 = 0, the so-
lution of the two equations are identical, ψ ≡ φ, and equal to the solution of single
NLSE, equation (1) with nonlinearity coefficient α = 2α1. The coefficient α2 is
called sometimes “cross-phase modulation” and its value (when α2 6= 0) plays role
in defining the elliptic, circular and linear polarizations. In this case, integrability
is lost, and numerical methods are to be used to study the evolution of the system.

Here is to be mentioned that two main versions of equation (1) appear in the liter-
ature. In the first one the sign of the time derivative is positive (as in equation (1),
which is the most popular version in nonlinear optics), and in the other – the sign
is negative. Unlike the parabolic equations, changing the sign does not make the
equation incorrect in the sense of Hadamard. Hence it does not really make differ-
ence which version will be used.

Functions ψ and φ have various interpretations in the context of optic pulses in-
cluding the amplitudes of x and y polarizations in a birefringent nonlinear planar
waveguide, pulsed wave amplitudes of left and right circular polarizations, etc. The
quantity γ is called normalized birefringence, and Γ is the relative propagation con-
stant. The presence of the two new parameters, γ and Γ, in equations (2) makes the
phenomenology of the system (2) much richer. In particular, they allow to study
the phenomena such as “self-dispersion”, “cross-dispersion”, and dissipation, etc.
(see [9] and the literature cited therein).

For Γ = γ = 0, equation (2) is alternatively called the Gross-Pitaevskii equation or
an equation of Manakov-Type. It was solved analytically for the case α2 = 0, β =
1
2 by Manakov [7] via inverse scattering transform who generalized an earlier result
by Zakharov and Shabat [13,14] for the scalar cubic NLSE (i.e., equation (2)ψ with
φ(x, t) = 0).
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Let us define mass, M , (pseudo)momentum, P , and energy, E, of the wave system
as follows

M
def
=

1

2β

∞
∫

−∞

(

|ψ|2 + |φ|2
)

dx (3)

P
def
= −

∞
∫

−∞

=(ψψ̄x + φφ̄x)dx (4)

E
def
=

∞
∫

−∞

Hdx

H
def
=β

(

|ψx|
2 + |φx|

2
)

−
α1

2
(|ψ|4 + |φ|4) (5)

− (α1+2α2)
(

|φ|2|ψ|2
)

−γ
(

|ψ|2+|φ|2
)

−2Γ<(φ̄ψ)

where H is the Hamiltonian density of the system. Note that the factor 1
2β is a

matter of definition and is added for the sake of further convenience. In the same
vein the signs in the expression of the energy are up to a definition and the choice
in the present paper is based on considerations of further convenience when the
quasi-particles are considered. It is readily proved that these quantities are either
conserved on the solutions of equation (2), or a balance law holds, namely

dM

dt
= 0,

dP

dt
= H

∣

∣

x=L2
−H

∣

∣

x=−L1
,

dE

dt
= 0 (6)

where −L1 and L2 are the left end and the right end of the interval under consid-
eration. For asymptotic boundary conditions the requirement ψ, φ = 0 at infinity
entails the requirement that the spatial derivatives also vanish. As a result, the
Hamiltonian density vanishes at infinities and the balance law for the pseudomo-
mentum becomes a conservation law.
We assume that for each of the functions φ, ψ the initial condition is of the form of
a single propagating soliton, namely

ψ(x, t), φ(x, t) = A sech [b(x−X − ct)] exp

{

i

[

c

2β
(x−X)− nt

]}

b2 =
1

β

(

n+ γ +
c2

4β

)

, A = b

√

2β

α1
, uc =

2nβ

c

(7)

where X is the spatial position (center of soliton) where the modulus soliton has
maximum, c is the phase speed, and n is the carrier frequency. Respectively b−1 is
a measure of the support of the localized wave.
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In this paper we investigate the evolution of systems of waves which in the initial
moment of time are superpositions of solitons of type of equation (7) and which
evolve according to system equations (2).
To solve this problem numerically, we use the conservative scheme in complex
arithmetic described in Appendix A. If one is to construct a numerical algorithm,
the above conservation laws have to be embodied in the scheme in order to faith-
fully represent the physics of the problem. We use different number of points in
spatial direction, typically of order of 8000-20000 points.
The parametric space of the problem is multidimensional, and it is impossible to
exhaust the different ranges in a single paper. We focus our attention here on
the effect of the nonlinear coupling and set Γ = γ = 0. We also fix β = 1,
because, in fact, the independent variable x can be scaled by β and the latter is
not an independent parameter. For the predominant set of numerical experiments,
we choose initial solitons which are moving envelopes over standing wave, i.e.,
n = 0. Similarly to the dispersion parameter β, the nonlinearity parameter α
can be absorbed in the amplitude of the solitons and can be held fixed. Thus the
parameter to be varied is α2, and more specifically, its ratio to α1. For definiteness,
we fix α1 = 1.
The aim of our work is to understand better the particle-like behavior of the lo-
calized waves. We call a localized wave a quasi-particle (QP) if it survives the
collision with other QPs (or some other kind of interactions) without losing its
identity.

3. Weak Interaction

Before proceeding to investigating the role of α2 6= 0, we computed the solution
for α2 = 0. As expected no interaction between the two components of the vector
soliton was observed, which confirms that only α2 governs the nonlinear effects,
not the full coefficient (α1+2α2). As should have been expected, our computations
showed that for α2 = 0 there was no interaction between the two orthogonal modes
ψ and φ, despite of the fact that α1 6= 0 means that terms proportional to |ψ|2 are
present in the equation for φ, and vice versa.
We begin our study with the case of relatively small α2. We chose for the phase
speeds of solitons cl = 1 and cr = −0.5 which does not restrict us very much
because in absence of linear coupling, γ = Γ = 0, one can change the phase
speed, but still obtains the same results provided that α1 is also changed. The
selected values for the phase speeds give for the amplitudes of the initial solitons
the following

Al ≡ Aψ =

√
2

2
≈ 0.7075, Ar ≡ Aφ =

√
2

4
≈ 0.3537. (8)
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According to the analytical expression from Appendix B, the masses of the two
quasi-particles are Ml ≡ Mψ = 1 and Mr ≡ Mφ = 0.5. Respectively the total
pseudomomentum is clMl − crMr = 0.75. Since in the initial moment of time
the two QPs are strictly 90◦ polarized we have only one of the amplitudes Aψ, Aφ
not equal to zero. Then equation (18) can be applied to the left and right solitons
separately to get that

Ekl =
1

2
c2lMl = 0.5, Ep

l =
2

3

(

A2
l bl −

A4
l

bl

)

=
2

3

(

1

4
−

1

2

)

= −
1

6
≈ −0.1667

Ekr =
1

2
c2rMr =

1

16
= 0.0625

Epr =
2

3

(

A2
rbr −

A4
r

br

)

=
2

3

(

1

32
−

1

16

)

= −
1

48
≈ −0.0208

El = Ek
l + Ep

l =
1

3
≈ 0.3333, Er = Ek

r + Ep
r =

1

24
≈ 0.0408

E = El + Er =
3

8
= 0.375

where the superscripts stand for “kinetic” and “potential” energies.

Note that the actual values obtained from the initial condition after being dis-
cretized on the chosen grid, are

Ml = 1.0000000, Mr = 0.50000000, P = 0.74921909, E = 0.37462784.

The small deviations for P and E of order of 0.1% are the effect of the truncation
error. Since the scheme is conservative, the above values are the one which are
kept constant during the time stepping.

We found that the interaction between the two components, ψ, φ, is insignificant
for α2 < 1. Fig. 1, shows the case α2 = 2 when for the first time an appreciable
cross signal is excited as a result of the interaction of the main solitons.

As it is the case with various other soliton problems (e.g., KdV, Boussinesq, Sine-
Gordon), the quasi-particle of lesser energy suffers more from the interaction. In
order to elucidate the process of interaction, we present in Fig. 2 the actual wave
profiles for both real and imaginary parts of the ψ and φ solutions for several time
stages during the interaction. It is clearly seen that there is intricate (but smooth!)
interaction between the real and imaginary parts. If one monitors just the absolute
values, then the profiles do not appear smooth during the interaction.

Now we concentrate on the trajectories of the quasi-particles after the collision.
Fig. 3 shows the result of the numerical calculations. The “center” of a QP is
defined as the point of maximum of either ψ or φ depending on which one was
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Figure 1. Head-on collision for cleft = 1, cright = −0.5; α2 = 2.
Up: |ψ|, |φ|. Down: <ψ,<φ.

present in the initial condition for this particular QP. We chose to track the com-
posite quasi-particle via the center for the shape of the function that was predomi-
nant in the initial moment. In doing so we were guided by the natural assumption
that during the interaction additional orthogonal components will be excited, but
the deformation of the main components will not be so drastic, so as to make them
disappear completely.
The most important observation for CNLSE is that the speeds of QPs change after
collision. Note that in the case of KdV, sG, and NLSE, the interactions result solely
in phase shift, while the phase speeds are strictly recovered after the interaction.
As shown in Fig. 3, the larger quasi-particle experiences lesser impact which is
the case with all soliton model equations reported in the literature. The excited
orthogonal signal is very small (as testified by Fig. 1), and the speed changes very
little: increasing from 1 to 1.0239. At the same time, the smaller quasi-particle
decreases its speed to 0.4218. It is a distinctly new feature of CNLSE not observed
in the other models. It is connected to the fact that the cross-modulation enhances
the excitability of the system. Under these circumstances, the phase shift have
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Figure 2. Wave profiles in the cross-section of interaction.

no analytical analog and we will define it as the difference between the actual
starting point of a quasi-particle and the starting point of a QP that coincides with
the morphed QP after the interaction. In this sense, the phase shift of the smaller
soliton is 40−32 = 8 (because the terminal trajectory is given by x = 32−0.4218t.
Respectively, the phase shift of the larger QP is 0.8.
As already mentioned when discussing Fig. 2, the modulus does not show the in-
tricate mechanisms of the interaction. Although, the moduli of the two orthogonal
modes show the individuality of each QP, the fact that each mode has real and
imaginary part is of utter importance during the interaction itself. A rather unex-
pected feature of the interaction appears to be the change of the carrier frequency.
The reader should be reminded here that we chose the initial value of n = 0 which
allows interpretation for a QP as a moving envelop over a standing wave. If we
“ride” the QP which means to introduce a moving coordinate system x = ct we
would observe a temporal oscillation with frequency ω = c2/2 in the moving
frame. Yet the modulus will have almost constant amplitude equal to the current
maximum. Note that the real and imaginary parts of the solution will oscillate in
the moving frame. If, after the interaction, the carrier frequency changes to some
n 6= 0, the temporal oscillation in the moving frame will have frequency different
from the apparent frequency of a single QP when considered in its moving frame.
In Fig. 4 a) we show the temporal frequency in the moving frame of the larger QP
(initial phase speed cl = 1). In the time interval before the collision, the frequency
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Figure 3. Trajectories of the quasi-particles form Fig. 1.

is equal to 0.5 = 12/2 within the truncation error. During the cross-section of the
interaction, there is brief attempt at creation of an orthogonal signal adjacent to the
lager QP, but in the long term, the former disappears, and the QP continues as a
single soliton with given phase speed and carrier frequency almost equal to zero.
After the solitons recover from the collision, the left soliton is already in the right
half of the spatial domain and is moving with phase speed 1.0239 (see Fig. 3).
At the same, time the direct inspection of the frequency data gives us a frequency
in the moving frame 0.482. Since the solitons preserve the general structure of
being envelops over some carrier frequency, then for the right-going soliton, the
frequency in the absolute coordinate system is related to the frequency in the mov-
ing frame as n = 1.02392/2 − 0.482 = 0.0422 (see Table 1 a)). This means that
the right-going soliton acquired some positive carrier frequency as a result of the
interaction. This value is not very large, which is another confirmation of the fact
that the larger soliton “suffers” insignificantly during the interaction for moderate
values of the cross-modulation parameter α2. The amplitude also does not change
very much: it goes down from

√
2/2 ≈ 0.707 to 0.680. Because the excited or-

thogonal soliton has very small amplitude, the polarization after the interaction is
virtually equal to the initial polarization of 90◦. In the same fashion we find that the
small φ-soliton excited with the right-going ψ-soliton has frequency in the moving
frame nm = 1.83 which gives for the carrier frequency in the absolute coordinate
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Figure 4. Temporal behavior of solitons in their moving frames.

system n = 1.0242/2 − 1.83 = −1.306, i.e., the satellite φ-soliton has negative
carrier frequency.
The situation with the smaller QP is quite different. As shown in Fig. 4 b), the
smaller QP suffers more from the interaction in the sense that the orthogonal signal
that is excited is of much larger amplitude. Respectively, the initial polarization of
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Figure 5. The localized shapes in their moving frames for time t =
160. Left: the ψ-mode of the right-going QP. Middle: the main φ-
mode of the left-going QP. Right: the excited ψ mode for the left going
QP.

0◦ changes to 26◦ after the interaction. The excited orthogonal soliton has not only
appreciable amplitude but also much smaller frequency in comparison with the
excited soliton for the larger QP. Thus the smaller QP after the interaction becomes
quite a different creature: it has what is called elliptic polarization (see [10]). The
elliptically polarized soliton has different carrier frequencies and supports for the
two components.
In the end, we try to identify the shapes of the QPs after the interaction. Fig. 5
shows the results for the shapes of the QPs in the moving frames for the last mo-
ment of time t = 160.
The left panel of Fig. 5 presents the shape attained by the larger QP. A best fit with
a sech function allows us to judge whether it has a shape similar to the analytical
solution. The larger QP has b ≈ 0.5 which is similar to the original support pa-
rameter, but the amplitude of the main soliton is actually smaller than the original
amplitude, at the time when the phase speed is larger. Clearly, the shape to which
the larger QP morphed after the interaction does not comply with the formulas
equation (7). The issues connected with polarization require a special investiga-
tion and will be pursued elsewhere. The most important conclusion here is that the
larger QP preserves its identity undergoing only a slight deformation.
The middle panel of Fig. 5 shows the φ-component of the QP which moves to the
left and did actually have a nontrivial φ-amplitude in the initial moment of time.
Finally, the third panel of Fig. 5 shows the excited by the interaction ψ-soliton
that travels to the left with the φ soliton. The situation with the smaller QP is
also not described by equation (7), because the supports of the sech-shapes for the
ψ- and φ-solitons are different. To the limitation of our knowledge, an analytical
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solution with different supports for the two orthogonal solitons is not available in
the literature. In [10], the shapes of the two components of the elliptically polarized
soliton are found numerically and they agree with the shapes found in the present
work.

Table 1. Quasi-Particles (QPs) for cl = 1, cr = −0.5 when α2 = 2.
a) Best-fit Parameters.

soliton collision component n c nm A b

right
going

before ψ (given) 0.0 1. 0.5 0.707 0.5

after ψ 0.0422 1.0239 0.482 0.680 0.5
φ -1.306 1.83 0.031 N/A

left
going

before φ (given) 0.0 0.5 0.125 0.354 0.25

after φ -0.079 0.4218 0.168 0.415 0.365
ψ -0.554 0.643 0.181 0.580

b) Properties of QPs before and after the collision.
soliton M c Ek Ep E P

Before collision
left (right going) 1.0 1.0 0.5000 -0.1667 0.3333 1.00
right (left going) 0.5 -0.5 0.0625 -0.0208 0.0417 -0.25
total 1.5 0.5† 0.5625 -0.1875 0.3750 0.75

After collision
right (right going) 0.9258 1.0239 0.4854 -0.1343 0.3511 0.9480
left (left going) 0.5283 -0.4218 0.0470 -0.0804 -0.0334 -0.2230
total 1.4541 0.4986† 0.5324 -0.2147 0.3177 0.7250
† the speed of the center of mass c = Ptotal/Mtotal.

We organize the above results in the Table 1 a) where the main parameters of QPs
before and after the interaction are presented.
On the basis of the best-fit parameters, as identified in Table 1 a), the mechanical
characteristics of the QP after the interaction can be computed. In Table 1 b) we
present these properties before and after the collision. The latter are computed
using the formulas form the Appendix B in which the best-fit parameters from
Table 1 a) are introduced. It is seen that the QPs emerge with different phase
speeds, masses, energies, and pseudomomenta. They are surrounded by a pool of
small oscillations that also have mass, energy and pseudomomentum. Since, the
total energy of the system of quasi-particles and oscillations is strictly conserved
by our scheme, the mismatch between the values of the main characteristics before
and after the collision can be attributed to the effect of the radiation. It is interesting
to note, that the total mass of the quasi-particles is slightly decreased from 1.5 to
1.454, which means that the mass lost in the oscillations is 0.056. The total energy
is decreased down to 0.3177 from the initial value of 0.375. This means that the
oscillations carried away not just part of the mass, but also part of the energy. For
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the kinetic energy we find (see Table 1 b)) that it is reduced after the collision, as it
should have been expected. The interesting observation is that the potential energy
of the QPs becomes more negative after the collision which results in even larger
decrease of the total energy. We can identify the potential energy as the “internal”
energy of the particles.
Finally, we mention that the pseudomomentum of the system of quasi-particles is
reduced from 0.75 to 0.725 as a result of the collision. This means that the radiation
also evacuates some 3% of the wave momentum.

4. Moderate Interaction

For consistency we keep the grid parameters the same and the values of the ini-
tial phase speeds are once again cleft = 1, cright = −0.5 and increase the cross-
modulation parameter α2 = 6.
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Figure 6. Head-on collision for cleft = 1, cright = −0.5; α2 = 6. The
two type of lines present |ψ| and |φ|, respectively.

Increasing the latter to 4 does not change qualitatively the dynamics of QP. The
difference from the case α2 = 2 is mostly in the increased amplitude of the excited
orthogonal solitons, especially the ψ-soliton accompanying the smaller left-going
φ soliton. In addition the support of the left-going soliton becomes shorter, and the
soliton further slows down. The qualitative change of the dynamics is observed for
α2 = 6. As shown in Fig. 6, apart from the increased amplitudes of the excited
accompanying components, a third QP appears as a result of the interaction.
The general tendency that the larger QP acquires larger velocity, and the smaller
QP acquires smaller phase speed and becomes much narrower is preserved, but
now a third QP appears after the collision. There was some small hint at this effect
even for the weak interaction, but now it is more pronounced. It is interesting that
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Figure 7. Trajectories of the quasi-particles form Fig. 6.

the third QP is moving to the right and its appearance did not seem to slow the
right going QP. In fact, the latter acquires even faster phase speed (see Fig. 7).
The kinetic energy of the larger QP increases after the interaction while the internal
energy of the smaller particle decreases so much that it becomes negative (to a
smaller extent this effect is observed also for the weak interaction, α2 = 2). In a
sense, the internal energy of the smaller QP is converted to kinetic energy of the
larger particle and is also used to create a new QP between the two main QPs. We
can call this “recoil effect”.
Now, we investigate the motion of the solitons in their moving frames. The results
are similar to the case α2 = 2, but the effect of the increase of the frequency in
the moving frame is much more pronounced (see Table 2). The most interesting
observation is that for the newly-born QP (the third soliton) the amplitudes of the
ψ-component is slightly larger than the φ-component, but the carrier frequency of
the latter is much higher. This situation is depicted in Fig. 8. The third QP has
somewhat larger support than the left-going one. Similarly to the latter, the former
exhibits almost equal amplitudes for ψ and φ solitons and almost equal supports.
Thus, the third QP looks closer to the analytical solution of type of equation (7).
Following the procedures described in the previous section for finding the best-
fit parameters we compiled a similar information for the QPs and is presented in
Table 2.
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Figure 8. Temporal behavior in its moving frame of the newly-created
QP after it appears for t ≈ 60 for the case from Fig. 6.

On can see from Table 2 that the energy of the left-going QP is negative, E =
−0.4020 as computed on the basis of the best-fit parameters. This raises the ques-
tion of the reliability of the result. In order to verify the latter, we clipped the
region around the left-going QP and computed numerically the energy and the
other characteristics directly from the available profile. We have found that the
directly evaluated energy is −0.3878 which confirms the validity of the best-fit
formulas. Respectively, for the directly computed mass we got M = 0.413 which
is in very good agreement with the best-fir result of 0.4231 (see the respective entry
of Table 2.
A natural question arises here about the symmetry of the interaction, namely what
will happen if the initial configuration of the solitons is perfectly symmetric. The
expectation is that the third QP will stay in the origin of the coordinate system,
i.e., a standing soliton should be born. Indeed, the computations confirmed this
supposition (see Fig. 9).
The fact that the third QP is a standing soliton is confirmed by Fig. 10 where one
sees that the real and the imaginary parts of the solution are strictly synchronized.
Table 3 presents the details about the properties of the three QPs for this case.
The interesting observation here is that the polarization of the standing soliton is
linear with θ = 45◦ which means that the amplitudes of the ψ- and φ-components
are equal. At the same time the polarization of the moving solitons is elliptic.
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Table 2. Quasi-Particles (QPs) for cl = 1, cr = −0.5 when α2 = 6.
a) Best-fit Parameters.

soliton collision component n c nm A b

right
going

before ψ (given) 0.0 1. 0.5 0.707 0.5

after ψ 0.4028 1.31 0.4553 0.62 0.58
φ -1.8738 2.7318 0.158 1.231

left
going

before φ (given) 0.0 -0.5 0.125 0.354 0.25

after φ -0.9894 -0.219 1.0134 0.59 1.1
ψ -2.6497 2.6737 0.4 1.5

newly
born
(middle)

before none 0.0 0.0 0.0 0.0 0.0

after φ -0.8315 0.327 0.885 0.23 0.86
ψ -0.2935 0.347 0.34 0.63

b) Properties of QPs before and after the collision.
soliton M c Ek Ep E P

Before collision
left (right going) 1.0 1.0 0.5000 -0.1667 0.3333 1.00
right (left going) 0.5 -0.5 0.0625 -0.0208 0.0417 -0.25
total 1.5 0.5† 0.5625 -0.1875 0.3750 0.75

After collision
right (right going) 0.6830 1.31 0.5861 -0.1848 0.4013 0.8948
left (left going) 0.4231 -0.219 0.0102 -0.4122 -0.4020 -0.0927
middle (newly born) 0.2450 0.327 0.0131 -0.0797 -0.0666 0.0801
total 1.3512 0.6529† 0.6093 -0.6767 -0.0673 0.8822
† the speed of the center of mass c = Ptotal/Mtotal.
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Figure 9. α2 = 6, cl = −cr = 1.

5. Strong Interaction

Clearly, the increase of the interaction parameter α2 makes the phenomenology
of the interaction much richer. We went even further and investigated also the
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Figure 10. Evolution of the standing soliton in the origin of the coor-
dinate system for the case from Fig. 9.

case α2 = 10 with the same grid parameters and the same phase speeds. Fig. 11
presents the interaction for the moduli of the solutions. The qualitative difference
with the case of moderate interaction is that now two new solitons are born after
the collision. The shapes of the new solitons are not very intuitive. The one that
goes to the right is much more prolate (with longer support), while the one going
to the left is steeper.
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Figure 11. α2 = 10, cl = 1, cr = −0.5.
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Table 3. Quasi-Particles (QPs) for cl = 1, cr = −1 when α2 = 6.
a) Best-fit Parameters.

soliton collision component n c nm A b

right
going

before ψ (given) 0.0 1 0.5 0.707 0.5

after ψ -0.1981 1.325 1.0759 0.7971 0.87
φ -5.4054 6.2832 0.2766 1.71

left
going

before φ (given) 0.0 -1 0.5 0.7071 0.5

after φ -0.1981 -1.325 1.0759 0.7971 0.87
ψ -5.4054 6.2872 0.2766 1.71

standing
before none 0.0 0.0 0.0 0.0 0.0

after φ -1.6755 0 1.6755 0.4982 1.31
ψ -1.6755 1.6755 0.4982 1.31

b) Properties of QPs before and after the collision.
soliton M c Ek Ep E P

Before collision
left (right going) 1.0 1.0 0.5000 -0.1667 0.3333 1.00
right (left going) 1.0 -1.0 0.5 -0.1667 0.3333 -1.00
total 2.0 0† 1.0 -0.3333 0.6667 0.0

After collision
right (right going) 0.775 1.325 0.6804 -0.5091 0.1713 1.027
left (left going) 0.775 -1.325 0.6804 -0.5091 0.1713 -1.027
standing 0.3729 0.0 0.0 -0.4443 -0.4443 0.0
total 1.9229 0.0† 1.3608 -1.4624 -0.1017 0.0
† the speed of the center of mass c = Ptotal/Mtotal.

The details of the interaction are presented in Table 5. To follow more than one
newly born QP is algorithmically complicated and we left out the issue of the
carrier frequency of the fourth QP (the right newly born one).

The kinetic energies of the newly created solitons correspond their phase speeds
and masses, but the internal energy is very different for the different QP. As already
mentioned, the left going secondary soliton is much steeper and this results into
negative potential energy commensurate with the potential energies of the main
left and right solitons. Yet, the right-going secondary soliton is a rather different
creature. Its support is much larger and, as a result, the stored elastic strain is
smaller, manifesting itself into less negative potential energy. As a result the total
energy of this QP is positive, albeit small while the left-going ones have negative
total energies. When α2 is large, the system is much more excitable than for mod-
erate and small values of α2 and the considerable deformations of the profile during
a collision can become the seeds of shapes that can evolve into quite different QPs
during the cross-section of the collision. As above mentioned, the total energy of
the QPs is radically different from the total energy of the initial wave profile. The
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Table 4. Integral Characteristics of Excitations.

Left Between Between Right
forerunner QP-2 and QP-3 QP-3 and QP-4 forerunner

M 0.0431 0.0269 0.05908 0.1969
P 0.0082 0.0083 0.07669 0.4087
E 0.2215 0.0044 0.0045 0.7225

differences are so drastic that the sum of QPs energies can even become negative.
This means that the energy was carried away by the radiation.

In order to confirm this conjecture we consider the final time stage from Fig. 11,
clip away the main QPs and calculate the energy of the wave profile that is left in
the reduced region. As one can see, the amplitude of the radiation that dwells in the
mentioned region is rather small. Yet the energy of the oscillations is very large,
particularly, the kinetic energy. For the case depicted in Fig. 11 we have computed
the different integral characteristics (mass, pseudomomentum, and energy) of the
excitations that appear between the main QPs and to the left and to the right of
them (the forerunners). We enumerate the different QPs from left to right, namely
the leftmost soliton is QP-1, and the rightmost is QP-4. The results are organized
in Table 4 for the different regions, save the small interval between QP-1 and QP-2
whose characteristics are negligible.

The masses and the pseudomomenta of the excitations are commensurate with their
relative importance for the amplitudes of the total wave profile. The important
result in Table 4 is that the predominant part of the energy is concentrated in the
left and right forerunners because of the kinetic energies of the latter are very large.
This is due to the fact that the forerunners propagate with very large phase speeds,
and span large portions of the region. Strictly speaking the forerunners are not
QPs because the shapes of their envelops evolve in time. Yet they are localized
“creatures” and have similar properties to the QPs as far as energy, mass, and
pseudomomenta are concerned.

Finally, we add together the energies of all four QPs and the excitations alike and
get results which are within 20% of the total energy as conserved of the scheme.
This means that the large negative energies of the QPs are the result of the evac-
uation of energy by the forerunners and is not a numerical effect. This kind of
transformation is a physical effect that is connected with the excitability of the
system and is not present in the case of a single Schrödinger equation. Energy
transformation is a specific trait of the coupled system considered here.
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6. Conclusion

In this paper we develop a complex-arithmetic implementation of a conservative
difference scheme for Coupled Nonlinear Schrödinger Equations (CNLSE). To this
end a special solver for Gaussian elimination with pivoting is developed for invert-
ing five-diagonal complex-valued matrices, which is a generalization of the solver
created earlier by one of the authors. The new solver allows us to use grids of con-
siderable sizes (up to 20000 grid points) and small time increments and to obtain
thus a reliable approximation.

The algorithm is validated by the mandatory numerical tests involving doubling the
mesh size and halving the time increment, as well as by the direct comparison in
couple of cases with the real-arithmetic schemes [4,9]. The advantages of the new
scheme are that the band of the matrix is twice smaller and that the overall number
of unknowns is also twice smaller. Our numerical tests show that, as expected, it
performs four times faster than the scheme from [4, 9].

The new tool developed here allowed us to investigate physically important sets of
parameters of the CNLSE and to investigate the role of nonlinear coupling in the
quasi-particle dynamics. The nonlinear coupling results in changing the original
polarization of the two signals from vertical/horizontal to a generally slanted one.
This means that although the initial conditions are nontrivial for only one of the
functions in each of the initial locations, after the interaction both functions acquire
nontrivial amplitudes in both locations.

We consider as an initial profile the superposition of solitons with linear polariza-
tions, one of them having only ψ-component, and the other - only φ-component.
Then this initial profile is allowed to evolve according to the system of Coupled
Schrödinger equations (CNLSE) and the results of the collision depend mostly on
nonlinear coupling parameter α2 (cross-modulation parameter) on the dynamics of
quasi-particles (QP). We have found that for α2/α1 < 4 the collision of the two
initial solitons of linear polarization produces only two solitons that are of different
polarization. The smaller soliton suffers more from the interaction and its polar-
ization becomes elliptic. In addition the new QPs that are born after the collisions
have slightly different phase speeds.

For moderate value of the cross-modulation parameter, α2/α1 = 6, we have found
that an additional QP is born which propagates in the direction of the faster QP,
while the initially smaller QP considerably reduces its phase speed. The initially
faster QP becomes even faster. The effect of the nonlinearity is so profoundly felt
that even the faster QP becomes elliptically polarized, although to a smaller extent
than the slower QP and the new-born QP. If the initial QPs have the same phase
speeds, the new-born QP is a standing soliton with linear polarization of 45%. In
the moderate case, we observed that the energies of the initially slower QP and the



Role of the Nonlinear Coupling in the Collision Dynamics of Quasi-Particles ... 267

Table 5. Quasi-Particles (QPs) for cl = 1, cr = −0.5 when α2 = 10.

a) Best-fit Parameters.
soliton collision component n c nm A b

right
going

before ψ (given) 0.0 1. 0.5 0.707 0.5

after ψ -0.5221 1.6625 1.904 0.6509 1.3
φ -4.9012 6.2832 0.3718 2.0

left
going

before φ (given) 0.0 -0.5 0.125 0.354 0.25

after φ -1.0351 -0.85 1.3963 0.5709 1.25
ψ -3.8276 4.1888 0.3628 1.758

middle
left
going

before none 0.0 0.0 0.0 0.0 0.0

after φ -2.7726 -0.725 3.0354 0.428 1.6
ψ -1.6412 1.904 0.4992 1.4

middle
right
going

before none 0.0 0.0 0.0 0.0 0.0

after φ N/A 0.7875 N/A 0.092 0.65
ψ N/A N/A 0.2363 0.345

b) Properties of QPs before and after the collision.
soliton M c Ek Ep E P

Before collision
left (right going) 1.0 1.0 0.5000 -0.1667 0.3333 1.00
right (left going) 0.5 -0.5 0.0625 -0.0208 0.0417 -0.25
total 1.5 0.5† 0.5625 -0.1875 0.3750 0.75

After collision
right (right going) 0.3950 1.6625 0.5459 -0.5408 0.0051 0.6567
left (left going) 0.3356 -0.85 0.1212 -0.4360 -0.3148 -0.2853
middle (right going) 0.1749 0.7875 0.0542 -0.0162 0.038 0.1377
middle (left going) 0.2925 -0.725 0.0769 -0.4677 -0.3908 -0.2121
total 1.198 0.2479† 0.7982 -1.4607 -0.6625 0.297
† the speed of the center of mass c = Ptotal/Mtotal.

new-born QP are negative. This is due to the fact that they are steeper (with smaller
support) and the potential energy (which is the stored elastic energy) becomes very
negative and dominates the kinetic energy. This means that part of the energy is
taken wavy by the after the interaction by the excited radiation.

Finally, we consider the case of large value of cross-modulation parameter, say
α2/α1 = 10 and find that the dynamics changes even more radically. Now two
new QPs are born, accompanying the two initial QPs which are also radically
transformed in the sense of polarization and energy. Now all four QPs have el-
liptic polarizations and negative total energies. In additions fast forerunners with
large positive (mostly kinetic) anergy are born which preserves the total energy of
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the system. In other words the radiation in form of forerunners evacuates positive
energy leaving the system of QPs with negative total energy.

These results are illustrated graphically and the data about properties of the QPs
are organized in tables.
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Appendix A. Conservative Difference Scheme in Complex Arithmetic

Creating and validating a numerical scheme based on complex-number arithmetic
is important for the future application of the conservative-scheme approach in two
spatial dimensions. The system for the real and imaginary parts of the wave func-
tion has an intricate form that precludes using operator splitting in the real-valued
version of the algorithm. Without splitting the needed computational resources in
2D are enormous which makes the approach rather unpractical. In this instance,
the present approach can be a good basis development of a 2D numerical scheme
based on operator splitting.

For the sake of selfcontainedness of the paper we present here the scheme devel-
oped in [12]. Consider a uniform mesh in the interval [-L1, L2]

xi = (i− 1)h, h = (L1 + L2)/(N − 1) and tn = nτ

where N is the total number of grid points in the interval and τ is the time incre-
ment. Respectively, ψni and φni denote the value of the ψ and φ at the ith spatial
point and time stage tn. Clearly, n = 0 refers to the initial conditions.

Our purpose is to create a difference scheme that is not only convergent (consistent
and stable), but also reflects the conservation laws equation (6). A scheme that
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satisfies them reads

i
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We have proved that the scheme equations (9),(10) conserves the discrete analogs
of mass and energy, from (6). Namely, for all n ≥ 0, we have

Mn =
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(

|ψni |
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The scheme equations (9), (10) cannot be implemented directly, because it is non-
linear with respect to the variables ψn+1

i and φn+1
i . We follow the idea of [4] and

introduce internal iterations, namely
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Now for the current iteration of the unknown functions (superscript n + 1, k + 1)
we have an implicitly coupled system of two tridiagonal systems with complex
coefficients. The coupling here is essential. Without it, it is not possible to ensure
the absolute stability of the scheme.
We conduct the internal iterations (repeating the calculations for the same time step
(n+1) with increasing value of the superscript k until convergence, i.e., when both
the following criteria are satisfied

max
i

|ψn+1,k+1
i − ψn+1,k

i | ≤ 10−12max
i

|ψn+1,k+1
i |

max
i

|φn+1,k+1
i − φn+1,k

i | ≤ 10−12max
i

|φn+1,k+1
i |.

(13)

After the internal iterations converge, one gets ψn+1 ≡ ψn+1,k+1 and φn+1 ≡

φn+1,k+1 which are the solutions of the nonlinear implicte scheme, equations (9),
(10) . We mention here that for physically reasonable time increments τ the num-
ber of internal iterations needed for convergence is four to six, which is a small
price to pay to have fully implicit, nonlinear and conservative scheme.
As mentioned above, the linearized scheme equations (11), (12) is inextricably
coupled. In order to be solved, the respective two tridiagonal linear algebraic sys-
tems are to be recast as a single five-diagonal system (see for details [12]. For the
inversion of the five-diagonal 2N × 2N matrix we created an algorithm based on
Gaussian elimination with pivoting which is a generalization of a similar algorithm
for real system developed in [3]. The details of the new algorithm and the FOR-
TRAN code will be published elsewhere. As it should have been expected, the
computational time needed for the scheme with complex arithmetic to complete
the calculations for a given set of parameters is four times shorter than the scheme
with real arithmetic.
The scheme was thoroughly validated through the standard numerical tests involv-
ing halving the spacing and time increment. The results confirm the second order of
accuracy in space and time. Another crucial validation is possible, through direct
comparison with the results [4, 9]. We did repeat a couple of the more involved
cases using both the scheme with real arithmetic and the presented here scheme
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with complex arithmetic. The results with the same scheme parameters turn out to
indistinguishable within the order of round-off error.

Appendix B. Analytic Expressions for Conserved Properties

Let us assume here that the two components of the vector soliton are moving to-
gether without changing their relative position. Then for both ψ and φ components
we have the same phase speed, c, but the amplitudes, A, size of support, b, and
frequencies, n can be different. A propagating soliton of this type is described by
the following formulas

ψ = Aψsech[bψ(x− ct)] exp

[

i

(

c

2β
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]

φ = Aφsech[bφ(x− ct)] exp
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)]

.

(14)

When the compound solution, the vector (ψ, φ), propagates steadily, the above
parameters are related as in equation (7)
For solution of type equation (14) the mass is given by the following formula
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For the wave momentum (pseudomomentum) we get in a similar fashion
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c ≡Mc. (16)
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The momentum of the quasi-particle is exactly the product of the mass and the
phase speed.
Now, for the energy we get
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In the above formula one of the integrals cannot be found analytically directly
unless bψ = bφ. Yet, we can have a reasonable approximation after we note that

sech2[bψ(x− ct)]sech2[bφ(x− ct)]dx

=
4

{cosh[(bψ + bφ)(x− ct)] + cosh[(bψ − bφ)(x− ct)]}2

and that for the cases treated in this work bψ ≈ bφ, i.e., |bφ − bψ| � |bφ + bψ|. In
such a case, in the region where cosh[(bψ − bφ)(x− ct)] changes rapidly, one can
assume that cosh[(bψ − bφ)(x− ct)] ∼ 1. Then
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The accuracy of this formula can easily be verified for a couple of specific values
of bψ and bφ for which the original integral can also be found analytically. For
specific ratios bφ/bψ, both the approximate and exact integrals can be represented
as κ/bψ, where κ is a different coefficient for the different cases. The results for
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several different ratios bφ/bψ are presented in Table 6. Clearly, up to bφ = 2bψ the
approximation is very reasonable and can be used to get an approximate analytical
expression for the integral and compare the energy to the numerically obtained
value.

Table 6. Comparison of the values for κ as obtained for the approx-
imate and exact integrals for several ratios bφ/bψ , for which the the
exact integral can be solved analytically.

bφ/bψ 1 1.25 1.3333 1.5 1.6666 2
approx. 1.3333 1.1852 1.1428 1.06667 1 0.8889
exact 1.3333 1.1805 1.1355 1.05333 0.9805 0.8584
error [%] 0 0.40 0.64 1.27 1.99 3.55

Finally, under the above assumption that the scales of the supports for the two
components are not very different, we have the following analytical approximation
of the energy

E ≈
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The term c2

2

[

1
β

(

A2
ψ

bψ
+

A2
φ

bφ

)]

≡ Mc2

2 can be called the “kinetic energy” of the

quasi-particle, while the rest of the terms can be called “internal energy” of the
quasi-particle.
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Abstract. Here we develop the direct scattering problem for quadratic bun-
dles associated to Hermitian symmetric spaces. We adapt the dressing method
for quadratic bundles which allows us to find special solutions to multicom-
ponent derivative Schrödinger equation for instance. The latter is an infinite
dimensional Hamiltonian system possessing infinite number of integrals of
motion. We demonstrate how one can derive them by block diagonalization
of the corresponding Lax pair.
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1. Introduction

The modern period in the history of integrable systems started with the discovery of
the inverse scattering transform (IST) by Gardner, Greene, Kruskal and Miura [7]
who solved the Cauchy problem for the Korteweg-de Vries equation. Ever since

∗Reprinted from J. Geom. Symmetry Phys. 29 (2013) 83–110.
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that time the applications of IST increased tremendously – from purely discrete
equations to multidimensional partial differential equations [1, 22].
Historically the first nonlinear evolution equations (NEEs) solved by means of IST
were associated with the scattering operator

L(λ) = i∂x +Q(x, t)− λσ3 (1)

where λ ∈ C is an external parameter called spectral parameter and

Q(x, t) =

(

0 q(x, t)
±q∗(x, t) 0

)

, σ3 =

(

1 0
0 −1

)

. (2)

The family of operators of this type operator is known as a linear bundle due to its
dependence on λ. Since that time the scheme of IST has been extended to matrix
Lax operators with a polynomial [6, 21] and even rational λ-dependence [28, 40].
The first step in this direction was done by Mikhailov and Kuznetsov [23, 26] who
proved the integrability of the two-dimensional Thirring model. The problem of
integrability can be reduced to the study of the following quadratic bundle Lax
operator

L(λ) = i∂x −
1

2
|q|2σ3 + λQ(x, t)− λ2σ3 (3)

where

Q =

(

0 q
q∗ 0

)

. (4)

Another equation with a physical application [29,30] was considered by Kaup and
Newell [20] who introduced the Lax operator

L(λ) = i∂x + λQ(x, t)− λ2σ3 (5)

where Q(x, t) is again in the form (4). This allowed them to solve the derivative
nonlinear Schrödinger equation (DNSE)

iqt + qxx + i(|q|2q)x = 0 (6)

and to find integrals of motion for it. The study of DNSE was continued by Gerd-
jikov, Kulish and Ivanov [14] who developed the generalised Fourier interpretation
for DNSE in terms of generating operators, squared solutions etc., have found the
action-angle variables for it and thus proved its complete integrability. Later Gerd-
jikov and Ivanov [10, 11] carried out an exhaustive study of the generic quadratic
bundle

L(λ) = i∂x + U0(x, t) + λU1(x, t)− λ2σ3 (7)

where U0(x, t) is an arbitrary 2 × 2 matrix while U1(x, t) has zero diagonal ele-
ments. In the latter papers the existence of Riemann-Hilbert problem with canoni-
cal normalization was exploited and its importance was clarified.
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Another fruitful idea in the soliton theory is to search for multicomponent equa-
tions integrable by means of IST. This trend was pioneered by Zakharov and Man-
akov [25, 38] who derived a three-wave system and a two-component counterpart
of the nonlinear Schrödinger equation. For that purpose they used a 3 × 3-matrix
analogue of the Lax operator (2). Soon it became clear that Lax pairs can be re-
lated to homogeneous and symmetric spaces in a very natural way [2, 4, 5]. In [4]
Fordy derived multicomponent versions of DNSE related to different Hermitian
symmetric spaces amongst which is the following one

iqt + qxx +
2i

m+ 1

((

q
T
q
∗
)

q
)

x
= 0 (8)

where q : R2 → C
m, m ≥ 2 is a smooth function. The multicomponent NEEs

related to symmetric spaces attracted attention again [12, 13] as a result of recent
studies on Bose-Einstein condensates [18, 24, 33].
The aim of the current paper is to build the foundations of the theory of quadratic
bundles associated with Hermitian symmetric spaces. In order to do this we are
going to use a gauge covariant approach [15]. This will allow us to treat in a
uniform manner any quadratic bundle regardless of the structure of the underlying
symmetric space.
The paper is organised as follows. In Section 2 we give some basic preliminary
facts on quadratic bundles associated with Hermitian symmetric spaces. After in-
troducing the main object of study we proceed with developing the direct scattering
problem and discuss the spectral properties of the respective scattering operator. In
Section 3 we adapt Zakharov-Shabat dressing method for the case quadratic bun-
dles of the mentioned type. This method allow us to derive particular solutions
of multicomponent DNSE. The form of dressing factor depends crucially on the
structure of symmetric space. Section 4 is dedicated to Hamiltonian interpreta-
tion of DNSE. We prove that there exist infinite number of integrals of motion and
present a general recursion formula. In doing this we make use of the method of
(block) diagonalization of Lax pair proposed in [3]. Section 5 contains a summary
of our results and some additional remarks.

2. Quadratic Bundles Related to Hermitian Symmetric Spaces

The current section is preliminary in nature. Its purpose is to provide an intro-
duction to the direct scattering theory of quadratic bundles related to Hermitian
symmetric spaces. In doing this we shall follow some well-known ideas from soli-
ton theory [15, 39].
Firstly we are going to shed light on the relation that exists between Hermitian sym-
metric spaces and quadratic bundles. Let G/H be a Hermitian symmetric space,
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i.e., G is assumed to be a connected simple Lie group1 and H ⊂ G is a stabilizer
of a typical point p ∈ G, see [16] for more detailed explanations. The Lie algebra
g corresponding to the Lie group G obeys the splitting

g = h⊕m (9)

where h is the subalgebra corresponding to the Lie subgroup H and the subspace m
represents its complement in g. Since the homogeneous space G/H is symmetric
the following relations

[h,m] ⊂ m, [m,m] ⊂ h (10)

hold true as well. In other words g is Z2-graded and the subspaces h and m are
eigensubspaces

h = {X ∈ g ; CXC = X}, m = {X ∈ g ; CXC = −X}

of the adjoint action of an involutive automorphism X 7→ CXC (Cartan’s involu-
tive automorphism).
Let us now consider the Lax pair

L(λ) = i∂x + λQ(x, t)− λ2J (11)

A(λ) = i∂t +
2N
∑

k=1

λkAk(x, t) (12)

where λ ∈ C is spectral parameter while Q(x, t), J and Ak belong to the Lie
algebra g. Let L and A be subjects to the Z2 reduction conditions [27, 28]

L†(λ∗) = L̃(λ), A†(λ∗) = Ã(λ) (13)

CL(−λ)C = L(λ), CA(−λ)C = A(λ) (14)

where tilde operation is defined as follows

L̃(λ)ψ = −i∂xψ + λψ(Q− λJ)

for ψ : R2 → C
n being a smooth function and ∗ stands for complex conjugation.

As a result of (13) all coefficients above become Hermitian matrices while the latter
reduction implies that J,A2k(x, t) ∈ h while Q(x, t), A2k−1(x, t) ∈ m. This way
L and A become compatible with Z2-grading of g and thus following [4] we say
that the Lax operators are related to the symmetric space G/H.

Remark 1. It is always possible to pick up J in such a way that h coincide with
the centralizer CJ = {X ∈ g ; [X, J ] = 0} of J . We shall assume that this is
done since this will simplify significantly some of our further considerations.

1We shall deal with matrix Lie groups and Lie algebras only.
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Example 2. Let us consider as a simple illustration a quadratic bundle related to
the symmetric space SU(m + 1)/S(U(1) × U(m)), m ≥ 2. In this case C =
diag(1,−1 . . . ,−1) and the subspace h consists of all (m + 1) × (m + 1) block
diagonal anti-Hermitian traceless matrices of the form











∗ 0 . . . 0
0 ∗ . . . ∗
...

...
. . .

...
0 ∗ . . . ∗











while m consists of all anti-Hermitian matrices with complementary block struc-
ture, namely











0 ∗ . . . ∗
∗ 0 . . . 0
...

...
. . .

...
∗ 0 . . . 0











.

In particular, the potential Q is given by

Q(x, t) =











0 q1(x, t) . . . qm(x, t)
q∗1(x, t) 0 . . . 0

...
...

. . .
...

q∗m(x, t) 0 . . . 0











. (15)

The subalgebra h coincides with CJ if J = diag(m,−1, . . . ,−1). The compati-
bility condition of the operators (11) and (12) for N = 2 (i.e., the quadratic flow)
produces exactly the multicomponent DNSE we mentioned in the previous section
(see formula (8)).

Example 3. Another example worthy to mention here is given by a quadratic bun-
dle related to the symmetric space SO(2r+ 1)/SO(2)× SO(2r− 1), r ≥ 2. Now
Cartan’s involution is given by C = diag(−1, 1 . . . , 1,−1). The subalgebra h

therefore consists of all anti-Hermitian matrices of the form














∗ 0 . . . 0 0
0 ∗ . . . ∗ 0
...

...
. . .

...
...

0 ∗ . . . ∗ 0
0 0 . . . 0 ∗














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while m contains all block off-diagonal matrices














0 ∗ . . . ∗ 0
∗ 0 . . . 0 ∗
...

...
. . .

...
...

∗ 0 . . . 0 ∗

0 ∗ . . . ∗ 0















.

The constant element J ∈ h now is chosen as follows J = diag(1, 0, . . . , 0,−1)
while the potential Q is given by

Q(x, t) =





0 q
T (x, t) 0

q
∗(x, t) 0 s0q(x, t)
0 q

†(x, t)s0 0



 (16)

for some smooth function q : R2 → C
2r−1. The presence of the 2r − 1 × 2r − 1

matrix (s0)ij = (−1)i−1δi 2r−j takes into account that Q is an element of the
orthogonal algebra so(2r + 1).
The compatibility condition of the Lax pair (11), (12) in the quadratic flow case
(N = 2) is equivalent to the multicomponent DNSE

iqt + qxx + i[2(qT
q
∗)q− (qT s0q

∗)s0q
∗]x = 0. (17)

In order to make the spectral problem well-defined we must impose certain bound-
ary conditions on the potential Q. We shall restrict ourselves to the simplest case
of zero boundary conditions

lim
x→±∞

Q(x, t) = 0. (18)

To be more specific we require that each matrix element of Q is a function of the
Schwartz type for x ∈ R. Moreover, we assume thatQ is such that the correspond-
ing Lax operator has a finite number of discrete eigenvalues.
The spectrum of the scattering operator L is determined by its resolvent R(λ)
defined by the equality

L(λ) ◦R(λ) = 11 (19)
where ◦ stands for operator composition. It follows from (19) that the resolvent is
an integral operator of the form

(R(λ)F ) (x, t) =

∫

∞

−∞

R(x, y, t, λ)F (y)dy (20)

for F : R → C
n being any continuous function. The kernel R(x, y, t, λ) is as-

sumed to be continuous with respect to variables x and y and its domain in the
spectral λ-plane is complementary to the spectrum of L. More specifically the
pole singularities of R, if exist, correspond to discrete eigenvalues of L while the
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locus of points in the λ-plane for which the boundary limx, y→±∞R(x, y, t, λ)
does not exist determines the continuous part of the spectrum [8, 15]. We shall
convince ourselves that the latter requirement is reduced to the following one by
the condition

Imλ2J = 0.

In all examples we shall encounter later on in the text J is a real matrix hence the
continuous spectrum is simply the real and imaginary axis of the Cartesian frame
in C. On the other hand due to reductions (13) and (14) the discrete eigenvalues of
L are sorted into certain discrete orbits of the reduction group Z2×Z2 [15,27,28].
Indeed, the resolvent obeys the symmetries

R†(λ∗) = R̃(λ) =⇒ R
†(x, y, t, λ∗) = R(y, x, t, λ) (21)

CR(−λ)C = R(λ) =⇒ CR(x, y, t,−λ)C = R(x, y, t, λ) (22)

where
(R̃(λ)F )(x, t) =

∫

∞

−∞

F (y)R(y, x, t, λ)dy.

It is immediately seen from the above relations that if µ is a pole of R(.) then −µ
and ±µ∗ are poles as well. Therefore the eigenvalues of L go into quadruples (each
quadrant in C contains the same number of eigenvalues.
Let us now consider the auxiliary linear problem

i∂xψ(x, t, λ) + λ(Q(x, t)− λJ)ψ(x, t, λ) = 0. (23)

The function ψ is fundamental solution to (23) and takes values in the Lie group
G. Since L and A commute any fundamental solution ψ satisfies

A(λ)ψ(x, t, λ) = ψ(x, t, λ)f(λ) (24)

as well. The quantity

f(λ) = lim
x→±∞

N
∑

k=1

λkAk(x, t) (25)

is called dispersion law. It labels the specific NEE amongst the integrable hierar-
chy, i.e., all equations to share the same Lax operator L. It is therefore an essential
feature of the integrable 1 + 1 dimensional equations.
Next we introduce a special type of fundamental solutions, namely Jost solutions
ψ±. They are defined through the following equality

lim
x→±∞

ψ±(x, t, λ)e
iλ2Jx = 11

as any two fundamental solutions are related with Jost solutions. The transition
matrix

T (t, λ) = (ψ+(x, t, λ))
−1 ψ−(x, t, λ) (26)
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is called scattering matrix. It is not hard to see that the time evolution of T is driven
by the dispersion law through the linear equation

i∂tT + [f(λ), T ] = 0 (27)

which is easily integrated to give

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t.

Equation (27) is a linearized version of the corresponding NEE. This important
fact underlies the method of IST for integration of NEEs [1, 15, 39]. From now on
shall skip the time dependance in order to simplify our notation.
Like in the case of a quadratic bundle related to sl(2) [11, 20] the Jost solutions
are defined on the continuous spectrum of L only. To see this one introduces the
auxiliary functions ξ± = ψ±e

iλ2Jx which satisfy the linear equation

i∂xξ± + λQξ± − λ2[J, ξ±] = 0

with boundary condition

lim
x→±∞

ξ±(x, λ) = 11.

Equivalently ξ± are solutions to the following Voltera type integral equations

ξ±(x, λ) = 11 + iλ

∫ x

±∞

e−iλ2J(x−y)Q(x)ξ±(y, λ)e
iλ2J(x−y)dy. (28)

Outside of the continuous spectrum of L (i.e., λ2 /∈ R) there always exist at least
one increasing exponential factor to make the integral divergent. This is why ξ± as
well as ψ± can not be analytically extended outside of the continuous spectrum. A
more detailed analysis however shows that there exists a solution χ+ to be analytic
in the first and third quadrant in C and another denoted by χ− analytic in the
second and forth quadrant. The fundamental analytic solutions are related to the
Jost solutions through

χ±(x, λ) = ψ−(x, λ)S
±(λ) = ψ+(x, λ)T

∓(λ)D±(λ) (29)

where all matrix factors introduced above appear in the LDU decomposition

T (λ) = T∓(λ)D±(λ)(S±(λ))−1

of the scattering matrix. In fact this is a generalization of the usual LDU decom-
position since all matrices involved here have a block structure compatible with
the splitting (9) of the Lie algebra g. For example when dealing with symmetric
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spaces of the type SU(m+ n)/S(U(m)×U(n)) we have the following

S+(λ) =

(

11m s
T
+(λ)

0 11n

)

, T+(λ) =

(

11m t
T
+(λ)

0 11n

)

S−(λ) =

(

11m 0
T

s−(λ) 11n

)

, T−(λ) =

(

11m 0
T

t−(λ) 11n

)

D+(λ) =

(

d+m(λ) 0
T

0 d+n (λ)

)

, D−(λ) =

(

d−m(λ) 0
T

0 d−n (λ)

)

where s±(λ) and t±(λ) are n ×m complex matrices and d±m(λ) are m ×m and
d±n (λ) are n × n complex matrices respectively. All these quantities can be ex-
pressed in terms of matrix elements of T , see [9] for instance.
It is clear from (29) that the fundamental analytic solutions are interrelated through

χ+(x, λ) = χ−(x, λ)G(λ), λ ∈ R ∪ iR

for G(λ) = (S−(λ))−1S+(λ). Thus χ+(x, λ) and χ−(x, λ) can be viewed as
solutions2 to a local Riemann-Hilbert factorization problem in λ-plane for contin-
uous spectrum of L being the boundary contour. As we shall see in next section
this fact is important for elaboration of dressing method.
The reductions (13) and (14) impose certain symmetry conditions on the Jost so-
lutions, the scattering matrix and fundamental analytic solutions. Here is a list of
these

[

ψ†

±(x, λ
∗)
]−1

=ψ±(x, λ),
[

T †(λ∗)
]−1

=T (λ)

Cψ±(x,−λ)C =ψ±(x, λ), CT (−λ)C =T (λ)

[

χ+(x, λ∗)
]†

= [χ−(x, λ)]−1, Cχ±(x,−λ)C =χ±(x, λ).

(30)

One important application of the fundamental analytic solutions is in the spectral
theory of the scattering operator. To see this let us define the function

R(x, y, λ) =

{

R+(x, y, λ), Imλ2 > 0

R−(x, y, λ), Imλ2 < 0
(31)

where

R
±(x, y, λ) = ±iχ±(x, λ)Θ±(x− y)

(

χ±(y, λ)
)−1

. (32)

2Strictly speaking solutions to a Riemann-Hilbert problem are the functions χ
±eiλ

2
Jx since they

have the proper normalization as |λ| → ∞.
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In the above equation Θ± is a matrix-valued function expressed in terms of Heavy-
side’s step function and certain constant projectors. For instance, for the symmetric
space SU(m+ 1)/S(U(1)×U(m)) we have

Θ±(x− y) = θ(±(y − x))P − θ(±(x− y)) (11 − P ) (33)

for P being a constant projector of the form P = diag(1, 0, . . . , 0).
It directly follows from (29) that the asymptotic behavior of the fundamental ana-
lytic solutions for λ2 ∈ R are given by

χ±(x, λ) −−−→
x→∞

e−iλ2JxS±(λ)

χ±(x, λ) −−−−→
x→−∞

e−iλ2JxT∓(λ)D±(λ).
(34)

Taking into account (34) we see that for λ2 ∈ R the operatorR(λ) becomes asymp-
totically unbounded. Hence the integral (20) does not converge as R(λ) is not de-
fined. As we have mentioned this condition determines the continuous part of the
spectrum of the scattering operator L. On the other hand when λ2 /∈ R it is the role
of the projector P to ensure that R± decreases exponentially as x, y → ±∞. P is
therefore implicitly related to the structure of the underlying symmetric space, i.e.,
the Z2-grading of the corresponding Lie algebra.
We shall state without proof the following important theorem

Theorem 4. The function R defined through (31) and (32) is an integral kernel of
the resolvent of L, i.e., the equality

L(λ)R(x, y, λ) = δ(x− y) (35)

holds true. The kernel R is a mesomorphic function in C with a finite number of
poles {±µk,±µ∗k}

l
k=1 to form the discrete spectrum of the scattering operator L.

The continuous part of the spectrum coincides with the real and the imaginary axis
in the spectral λ-plane.

3. Special Solutions to DNSE

In this section we are going to integrate multicomponent DNSE related to symmet-
ric spaces, i.e., find their particular solutions. There are different approaches for in-
tegration of such nonlinear evolution equations, see [15,17,31]. It is our belief that
the dressing technique proposed by Zakharov-Shabat [41] and developed further in
[19,40] provides a very convenient and powerful tool to solve multicomponent evo-
lution equations associated with homogeneous or symmetric spaces. Being purely
algebraic in nature the dressing method takes into account the algebraic structures
(if present) underlying the Lax pairs and in that way offers a uniform approach to
a variety of integrable nonlinear problems. This is why our main purpose here is to
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adapt the dressing method in case of quadratic bundles. This will allow us to find
easily the soliton solutions to DNSE.

3.1. Dressing Method

As we saw in the previous section the inverse scattering method can be reduced to
a matrix Riemann problem on the λ-plane. This remarkable fact underlies one of
the formulations of the dressing method [15,39] in terms of one-parameter families
of gauge transforms of the Lax pair. The dressing method allows one to integrate a
given NEE indirectly, i.e., starting from a known solution one obtains another one.
Let Q0(x, t) be a known solution to a DNSE related to some Hermitian symmetric
space. It plays the role of a potential for the linear problem

L0ψ0 = i∂xψ0 + λ(Q0 − λJ)ψ0 = 0. (36)

Let us apply the gauge transform

g : ψ0(x, t, λ) → ψ1(x, t, λ) = g(x, t, λ)ψ0(x, t, λ) (37)

to the fundamental solution ψ0. Under the assumption of g-covariance of the lin-
ear problem, i.e., the dressed function ψ1 is a fundamental solution to the linear
problem

L1ψ1 = i∂xψ1 + λ(Q1 − λJ)ψ1 = 0 (38)

where Q1(x, t) is some other potential to be found, we deduce that the dressing
factor g satisfies

i∂xg + λQ1 g − λgQ0 − λ2[J, g] = 0. (39)

Similarly, by comparing the two linear problems

A0(λ)ψ0 = i∂tψ0 +
2N
∑

k=1

λkA
(0)
k ψ0 = ψ0f(λ)

A1(λ)ψ1 = i∂tψ1 +
2N
∑

k=1

λkA
(1)
k ψ1 = ψ1f(λ)

we obtain another differential equation for g, namely

i∂tg +
2N
∑

k=1

λkA
(1)
k g − g

2N
∑

k=1

λkA
(0)
k = 0. (40)

The gauge transform (37) acts on any fundamental solution including the Jost so-
lutions. To ensure that the dressing procedure leads to Jost solutions to (38) one
has to modify (37) into

ψ0,± → ψ1,± = gψ0,± g
−1
± , g± = lim

x→±∞
g. (41)
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This results in the following transformation law for the scattering matrix

T0 → T1 = g+ T0 g
−1
− . (42)

The fundamental analytic solutions in their turn are dressed through the formula

χ±

1 = gχ±

0 g
−1
− . (43)

Using (43) it is seen that the resolvent kernel R0 for the bare operator L0 is trans-
formed into

R1(x, y, t, λ) = g(x, t, λ)R0(x, y, t, λ)[g(y, t, λ)]
−1. (44)

Formula (44) shows that even if the bare kernel R0 might have not any singu-
lar points while the dressed one could – these are singularities introduced by the
dressing factor and/or its inverse. The new singular points contribute to the discrete
spectrum of the dressed operator L1. As we discussed in the previous section these
points could not be arbitrary. Another way to see this is to write down the sym-
metry conditions fulfilled by the dressing factor. Indeed, due to the Z2 reductions
(30) we have

[

g†(x, t, λ∗)
]−1

= g(x, t, λ) (45)

Cg(x, t,−λ)C−1 = g(x, t, λ). (46)

Relation (46) implies that if µ is a singularity of g so is −µ while from (45) we
deduce that ±µ∗ are singularities for g−1. This proves that the singularities of
the resolvent go in quadruples which resonates to our statement from the previous
section.
In order to proceed further we need to make some additional assumptions for the
structure of the dressing factor. It is evident from (39) and (40) that if g does
not depend on λ then it is simply a constant. On the other hand the connection
between the inverse scattering method and Riemann-Hilbert problem implies that
the dressing factor has to be divergent as |λ| → ∞ to ensure that dressed solutions
χ±

1 have the proper λ-asymptotics. So to obtain nontrivial results we should pick
up a dressing factor possessing certain number of singularities. For the sake of
simplicity we shall restrict ourselves with dressing factors having simple poles
only. Such a factor can be presented as follows

g(x, t, λ) = 11 +
l
∑

k=1

λ

µk

(

Bk(x, t)

λ− µk
+

CBk(x, t)C

λ+ µk

)

, µ2k /∈ R. (47)

According to (46) its inverse looks as follows

g−1 = 11 +
l
∑

k=1

λ

µ∗k

(

B†

k

λ− µ∗k
+

CB†

kC

λ+ µ∗k

)

· (48)
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After multiplying (39) by g−1/λ, and then taking the limit as |λ| → ∞ we get the
following interrelation between the seed solution Q0 and the dressed one

Q1 = AQ0A
† +

l
∑

k=1

[J,Bk −CBkC]A† (49)

where

A = 11 +
l
∑

k=1

1

µk
(Bk +CBkC). (50)

So Q1 is completely determined if we know the residues Bk. The power of the
dressing method consists in the fact that Bk can be expressed in terms of funda-
mental solutions to (36) (and its λ - derivatives) only. To see this we shall analyse
the identity

gg−1 = 11. (51)

Since (51) holds identically with respect to λ it gives rise to certain algebraic re-
lations for the residues of g. The form of these relations depends crucially on
whether a part of the poles of g and its inverse coincide or not. This is why we
shall consider two examples which are more or less representative ones.

Example 5. Let us consider the case of a quadratic bundle associated with sym-
metric space SU(m+ 1)/S(U(1)×U(m)). Then the simplest choice for g is

g(x, t, λ) = 11 +
λB(x, t)

µ(λ− µ)
+
λCB(x, t)C

µ(λ+ µ)
, µ2 /∈ R (52)

and formula (49) simplifies into

Q1 = AQ0A
† + [J,B −CBC]A† (53)

where

A = 11 +
1

µ
(B +CBC)·

After calculating the residue at λ = µ in (51) we obtain the algebraic relation

B

(

11 +
µB†

µ∗(µ− µ∗)
+

µCB†
C

µ∗(µ+ µ∗)

)

= 0. (54)

If B is invertible then (54) implies that it is proportional to 11. In order to obtain
nontrivial dressing we assume B is degenerate. Hence there exist two rectangular
(m + 1) × k matrices X(x, t) and F (x, t) such that B = XF T . Then (54) is
reduced to an algebraic equation for X whose solution reads

X =
µ

µ∗

(

F TF ∗

µ− µ∗
−
F T

CF ∗

µ+ µ∗
C

)−1

F ∗. (55)



288 Tihomir I. Valchev

The factor F can be found from differential equation (39). Evaluating the residue
at λ = µ and taking into account (54) leads to the differential equation

i∂xF
T − F T (µQ0 − µ2J) = 0. (56)

Therefore we have
F T (x) = F T

0 [ψ0(x, µ)]
−1 (57)

where ψ0 is any fundamental solution to (36) defined in a vicinity of µ and F0 is a
constant matrix. What remains is to recover the time evolution. For this to be done
we analyse equation (40) in the same way we did with (39). The residue of (40) at
the point µ gives rise to a differential equation for F in the form

i∂tF
T − F T

2N
∑

k=1

λkA
(0)
k = 0. (58)

After taking into account (57) and (40) we deduce that the matrix F0 evolves with
time according to equation

i∂tF
T
0 − F T

0 f(µ) = 0 (59)

where f(λ) is the dispersion law of the nonlinear equation. Thus in order to derive
the time dependence for the dressed potential one does the following substitution

F T
0 → F T

0 e−if(µ)t. (60)

In the previous example the poles of the dressing factor and its inverse were dis-
tinct. As we shall see in next example this is not always possible to achieve. This
results in a more complicated procedure to find the residues of g.

Example 6. Let us consider now quadratic bundles related to BD.I Hermitian
symmetric spaces. Then apart of (45) and (46) the dressing factor must obey the
orthogonality condition

gTSg = S (61)

where S is the matrix involved in the definition of the orthogonal group. To meet
the requirements of all reductions we pick up g in the form

g = 11 +
λB

µ(λ− µ)
+

λCBC

µ(λ+ µ)
+

λSB∗S

µ∗(λ− µ∗)
+
λCSB∗SC

µ∗(λ+ µ∗)
(62)

while its inverse looks as follows

g−1 = 11 +
λB

µ(λ− µ)
+

λCBC

µ(λ+ µ)
+

λSB∗S

µ∗(λ− µ∗)
+
λCSBSC

µ∗(λ+ µ∗)
· (63)
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Relation (49) now looks as follows

Q1 = AQ0A
† + [J,B + SB∗S −CBC− SCB∗

CS]A† (64)

for A in the form

A = 11 +
1

µ
(B +CBC) +

1

µ∗
S(B∗ +CB∗

C)S · (65)

The identity (51) now leads to a couple of algebraic conditions for B, namely

BSBT = 0 (66)

BSΩTS +ΩSBTS = 0 (67)

where

Ω = 11 +
CBC

2µ
+

µSB∗S

µ∗(µ− µ∗)
+
µCSB∗SC

µ∗(µ+ µ∗)
·

Equations (66) and (67) imply that B is a degenerate, i.e., it is decomposable into
B = XF T for X(x, t) and F (x, t) being m × k rectangular matrices. Relations
(66) and (67) can be rewritten in terms of F and X to give

F TSF = 0, ΩSF = Xα (68)

for α(x, t) being some appropriately chosen k × k skew-symmetric matrix. In the
simplest case k = 1 it simply vanishes and (68) obtains the form

SF = aCX + bSX∗ + cCSX∗ (69)

where we have introduced

a = −
F T

CSF

2µ
, b = −

µF †F

µ∗(µ− µ∗)
, c = −

µF †
CF

µ∗(µ+ µ∗)
·

Due to the Z2 symmetries the algebraic relations derived at the other three poles
read

CSF = aX + bCSX∗ + cSX∗ (70)

F ∗ = a∗CSX∗ + b∗X + c∗CX (71)

CF ∗ = a∗SX∗ + b∗CX + c∗X. (72)

The system of equations (69)–(72) is regarded as a linear system for the factor X
(as well as for SX∗, CX and CSX∗). After performing elementary manipulations
we get

X =
1

∆
(∆dSF +∆aCSF +∆bF

∗ +∆cCF
∗) (73)
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where

∆d = a∗(bc∗ + cb∗), ∆a = a∗(|a|2 − |b|2 − |c|2)

∆b = b|b|2 − b|a|2 − b∗c2, ∆c = c|c|2 − c|a|2 − c∗b2

∆ = |a|4 − 2|ac|2 − 2|ab|2 + |b|4 − (b∗)2c2 − b2(c∗)2 + |c|4.

Thus we have expressed X through F . It is not hard to be verified that the formula
(57) holds in this case too.
In order to recover the time evolution one follows the same steps as in the previous
example. By doing this one can convince himself that the rule (60) is still valid.

3.2. Soliton Solutions

Here apply the general results from the previous one to evaluate the simplest class
of solutions – the one-soliton solutions. We shall focus our attention to the vector
DNSE related to SU(m+ 1)/S(U(1)×U(m)), see (8).
To derive the one-soliton solution we setQ0 = 0. As a fundamental solution to (36)
we can pick up the plane wave exp(−iλ2Jx). Then in the case when rankB = 1
F becomes a column vector of the form

F (x, t) =











emiµ2xF0,1

e−iµ2xF0,2
...

e−iµ2xF0,m+1











. (74)

After substituting (74) into (55) and then into (53) we get the reflectionless poten-
tial to be

qj−1
1 (x) = (Q1)1 j(x) = 2i(m+ 1)

m+1
∑

l=2

ρ sin(2ϕ)e−iσl(x)eθl(x)

e−2iϕ +
∑m+1

p=2 e2θp(x)

(75)

×

(

δjl − 2i sin(2ϕ)
eθj(x)+θl(x)ei(δj−δl−2ϕ)

e−2iϕ +
∑m+1

p=2 e2θp(x)

)

.

We have used above the notation

θp(x) = (m+ 1)ρ2 sin(2ϕ)x− ξ0,p, p = 2, . . . ,m+ 1

σp(x) = (m+ 1)ρ2 cos(2ϕ)x+ δ1 − δp − ϕ, µ = ρ exp(iϕ)

ξ0,p = ln |F0,1/F0,p|, δ1 = argF0,1, δp = argF0,p.
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In order to obtain the one-soliton solution from (76) one needs to recover the time
dependence. Taking into account that for (8) f(λ) = −(m + 1)λ4J formula (60)
leads to the following correspondence

ξ0,p → ξ0,p − 2(m+ 1)ρ4 sin(4ϕ)t

δ1 → δ1 + 2mρ4 cos(4ϕ)t, δp → δp − 2ρ4 cos(4ϕ)t.
(76)

Remark 7. Let us consider the simplest possible case which occurs when m = 1.
Then the dressing factor (52) obtains the form

g = 11 +
λB

µ(λ− µ)
+

λσ3Bσ3
µ(λ+ µ)

· (77)

According to (53) the reflectionless potential can be written as follows

q1(x) =
4iρ sin(2ϕ)e−iσ(x)eθ(x)

[

e2iϕ + e2θ(x)
]

[

e−2iϕ + e2θ(x)
]2 (78)

where

θ(x) = 2ρ2 sin(2ϕ)x− ξ0, ξ0 = ln |F0,1/F0,2|

σ(x) = 2ρ2 cos(2ϕ)x− δ0, δ0 = δ2 − δ1 − 3ϕ.

To obtain the one-soliton solution for DNSE (6) we should recover the time depen-
dence in (78) by using the rule

ξ0 → ξ0 − 4ρ4 sin(4ϕ)t, δ0 → δ0 − 2ρ4 cos(4ϕ)t.

This way we have just reproduced the Kaup-Newell soliton obtained in [20].

It is clear that by dressing (76) once again one is able to construct a two-soliton
solution and so on. Proceeding this way one can generate step by step the multi-
soliton solutions

Q0 → Q1 → . . .→ Ql → . . .

Another way to do this is by using a dressing factor with an appropriate number of
simple poles, namely

g = 11 +
l
∑

k=1

λ

µk

(

Bk

λ− µk
+

CBkC

λ+ µk

)

, µ2k /∈ R. (79)

Then the multisoliton solution can be derived from the formula (49) by setting
Q0 = 0. As before the residues of g can be presented as a product of two rectangu-
lar matrices Xk and Fk. A detailed analysis, quite similar to what we did before,
shows that the factor Fk are expressed through the a fundamental solution to the
bare linear problem as follows

F T
k (x) = F T

0,k[ψ0(x, µk)]
−1. (80)
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On the other hand the factors Xk are solutions to the linear system

F ∗

k =
l
∑

j=1

µ∗k
µj

(

Xj

F T
j F

∗

k

µj − µ∗k
−CXj

F T
j CF ∗

k

µj + µ∗k

)

· (81)

By solving it one is able to find the residues Bk and then derive the reflectionless
potential. To recover the time dependence one should apply the same considera-
tions as in the Example 5. The result is given by the rule

F T
k,0 → F T

k,0e
−if(µk)t

which is a natural generalization of correspondence (60).

4. Integrals of Motion

As it was shown in [4] the multicomponent DNSEs related to Hermitian symmetric
spaces can be viewed as infinite dimensional Hamiltonian systems whose Hamil-
tonian is connected to the curvature tensor of the corresponding symmetric space.
In this section we aim to describe analytically the conserved densities of integrals
of motion for multicomponent DNSEs. For this to be done we are going to use
the method of diagonalization of Lax pair proposed by Drinfel’d and Sokolov [3].
This will allow us to derive a general formula generating the conserved quantities
in a recursive manner.
We shall start with some general remarks on quadratic bundles related to arbitrary
symmetric spaces. Then in order to obtain more concrete results we shall consider
two examples referring to symmetric spaces of the type A.III and BD.I, see [16].
Let us consider the quadratic bundle Lax pair

L(λ) = i∂x + λQ(x, t)− λ2J (82)

A(λ) = i∂t +
2N
∑

k=1

Ak(x, t)λ
k (83)

which is related to a Hermitian symmetric space G/H. This means that the po-
tential Q as well as A2j−1, j = 1, . . . , N take values in m ∈ g while J and A2j

take values in the subalgebra h (see the beginning of Section 2 for detailed expla-
nations). In accordance with the discussion in Section 2 we pick up J in such a
way that its centralizer coincides with h.
Let

P(x, t, λ) = 11 +
∞
∑

k=1

pk(x, t)λ
−k (84)
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be a one-parameter family of gauge transformations3 acting on the fundamental
solutions to the linear problem (23) as follows

ψ(x, t, λ) → ψ̃(x, t, λ) = (P(x, t, λ))−1ψ(x, t, λ).

The Lax pair (82) and (83) is transformed into

L̃ = P
−1LP = i∂x − λ2J + λL−1 + L0 +

L1

λ
+

L2

λ2
+ · · · (85)

Ã = P
−1AP = i∂t +

2N
∑

k=1

λkA−k +A0 +
A1

λ
+

A2

λ2
+ · · · (86)

Let us now assume that Lk,Ak ∈ h, i.e., they are block diagonal matrices. As
we shall see in next examples for certain diagonal matrix elements (or traces of
diagonal blocks) of Lk and Ak the commutator in the zero curvature representation

i∂tLk − i∂xAk +
∑

j

[Aj ,Lk−j ] = 0, k = −1, 0, . . . (87)

vanishes. Thus (87) reduces to continuity equation, i.e., the corresponding ele-
ments (or traces of blocks) of Lk are local conserved densities. Apart of local
conserved densities there exist nonlocal ones related to matrix elements for which
the commutator does not vanish.
To find the conserved densities we simply substitute (82) and (84) into (85) and
then compare coefficients before the same powers of λ. In result we get the fol-
lowing system of recurrence relations

L−1 = Q− [J, p1] (88)

L0 + p1L−1 = Qp1 − [J, p2] (89)

L1 + p1L0 + p2L−1 = ip1,x +Qp2 − [J, p3] (90)

· · ·

Lk +
k+1
∑

j=1

pjLk−j = ipk,x +Qpk+1 − [J, pk+2] (91)

· · ·

3Strictly speaking the gauge transformation P takes values in G and one should use an expansion of
the form

P(x, t, λ) = exp

(

∞
∑

k=1

Pk(x, t)λ
−k

)

, Pk(x, t) ∈ g

instead of (84). But since we deal with matrix Lie groups and Lie algebras the expansion (84) is
correctly defined. Of course, one should keep in mind that pk(x, t) are neither group nor algebra
elements – they are arbitrary matrices. This choice of expansion parameters although not quite aes-
thetic from theoretical point of view is very useful from purely practical one, since it will significantly
simplify our further calculations.
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In order to resolve it we need to introduce the following projector

ΠJ = ad−1
J ad J , (ad−1

J X)rs =
Xrs

Jr − Js
, r 6= s

which cuts off the corresponding block-diagonal parts of matrices. Thus extracting
the block diagonal part from the first recurrence relation we see that L−1 does not
contribute to the integrals of motion while the off-block diagonal part reads

Q = [J, p1]. (92)

To fix the existing ambiguity we assume that the matrices p j , j = 1, 2, . . . do not
have block diagonal parts. Then (92) allows one to write

p1 = ad−1
J Q. (93)

To obtain a nonzero conserved density one considers relation (89) which splits into

L0 = (11 −ΠJ)Qp1 = (11 −ΠJ)
(

Q ad−1
J Q

)

(94)

p2 = ad−1
J ΠJ(Qp1) = ad−1

J ΠJ

(

Q ad−1
J Q

)

. (95)

Proceeding in the same way with the general recursion relation (91) we get the
following result

Lk = (11 −ΠJ)



Qpk+1 −

k+1
∑

j=1

pjLk−j



 , k = 1, 2, . . . (96)

pk+2 = iad−1
J pk,x + ad−1

J ΠJ



Qpk+1 −

k+1
∑

j=1

pjLk−j



 . (97)

Formula (96) allows us to find the conserved density contained in Lk algorithmi-
cally.
In order to interpret DNSE as a Hamiltonian equation one needs to introduce a
Poisson structure. Let

F ([Q(x, t)]) =

∫

∞

−∞

F([Q(x, t)])dx

be a functional of the potential Q and its x-derivatives. The variational derivative
δF/δQ is a matrix whose matrix elements are defined by the equality

(

δF

δQ

)

rs

=
δF

δQrs

·
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For any two functionals F and G the simplest Poisson bracket4 for DNSE reads

{F,G} =

∫

∞

−∞

dx tr

(

δF

δQ

∂

∂x

δG

δQT

)

· (98)

In order to be more specific let us illustrate our results with two examples.

Example 8. Consider the symmetric space SU(m + 1)/S(U(1) × U(m)). Then
taking into account formula (15) for p1 we get

p1(x, t) =
1

m+ 1

(

0 q
T (x, t)

−q
∗(x, t) 0

)

(99)

where q(x, t) is a complex m-vector. According to (94) and (95) the coefficient L0

is given by

L0 =
1

m+ 1

(

−q
T
q
∗ 0

0 q
∗
q
T

)

(100)

while p2 vanishes. Thus as an integral density one can choose I1 = q
†
q. The

general recursion formula (96) in its turn simplifies into

Lk = Qpk+1 (101)

where pk can be found from the equality

pk = ad−1
J



ipk−2,x −

k−2
∑

j=1

pjLk−2−j



 . (102)

Taking into account (101) and (102) it is evident that L1 = 0. Thus next nonzero
integral density I is connected to the matrix L2(x, t). The result reads

I2 = iq†
qx −

1

m+ 1
(q†

q)2. (103)

It is not hard to be checked that it represents the Hamiltonian density H for the
multicomponent DNSE (8) provided the Poisson bracket is defined as in (98). The
DNSE can be written down in a Hamiltonian form as follows

qk, t = ∂x
∂H

∂q∗k
, k = 1, . . . ,m. (104)

The results we have just obtained can be summarized in the following theorem:

Theorem 9. All matrices Lk corresponding to odd indices vanish while the rest
are generated by formulae (101) and (102).

4In fact, there is a whole infinite hierarchy of Poisson brackets introduced by appropriate recursion
operator.
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Proof: We already saw that L−1 = L1 = 0. So the statement of the theorem
follows immediately from (101) and (102) after performing elementary induction.

�

Example 10. Let us now examine the case when the Hermitian symmetric space is
of the type SO(2r + 1)/SO(2) × SO(2r − 1). The potential in this case is given
by (16) and the coefficient p1 reads

p1 =





0 q
T 0

−q
∗ 0 s0q

0 −q
†s0 0



 . (105)

According to formulae (94) and (95) we have

L0 =





−q
T
q
∗

0
T 0

0 q
∗
q
T − s0qq

†s0 0

0 0
T

q
†
q



 (106)

p2 =
1

2





0 0
T
q
T s0q

0 0 0

q
†s0q 0

T 0



 · (107)

Hence the first conserved density I1 = q
†
q formally coincides with that in the

previous case. It is not hard to be verified that L1 = 0 so next conserved density is
obtained from L2. Substituting all quantities needed in (96) leads to the following
result

I2 = iq†
qx −

(

q
†
q

)2
+

1

2

∣

∣q
T s0q

∣

∣

2
. (108)

This is the Hamiltonian density of DNSE (17) provided the Poisson structure is
picked up as in (98).

5. Conclusions

In the present paper we have studied some general properties of quadratic bundles
related to arbitrary Hermitian symmetric spaces. In particular, we have introduced
all basic notions like Jost solutions, scattering matrix, fundamental analytic solu-
tions etc., required to formulate direct scattering problem. Using the fundamental
analytic solutions we have constructed the resolvent of the scattering operator and
discussed its properties which determine the spectrum of the scattering operator L.
We have adapted the Zakharov-Shabat dressing technique to quadratic bundles of
the afore-mentioned type. Though the method itself is not sensitive to the symmet-
ric space type (more precisely to its structure), the form of the dressing factor may
vary from one symmetric space to another. For example in the case of A.III sym-
metric spaces one can use the two-pole dressing factor (52) while for BD.I this
is not possible any more – one needs to use a four poles factor, see formula (62).
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By applying the dressing method we have derived the one-soliton solution to the
multicomponent DNSE related to A.III and discussed how one can construct mul-
tisoliton solutions. These results generalize the classical ones by Kaup and Newell
[20] for the scalar DNSE – the latter can be obtained by using a dressing factor of
the form (77). Similarly, one can derive the soliton solutions for DNSE related to
other symmetric spaces, say symmetric spaces of the series BD.I. However, this
requires much more technical efforts due to the complicated form of the dressing
factor (62) .
Since multicomponent DNSE are infinite dimensional Hamiltonian systems there
exist at least one integral of motion for them – the Hamiltonian itself. We have
proved in the previous section that in fact there are infinite number of conserved
quantities associated with multicomponent DNSE and we have derived a general
recursion formula which allows one to generate them. For that purpose we have
applied the method of block-diagonalization of Lax pair. As a simple illustration
we have evaluated the first two integrals of motion in the case of the symmetric
spaces SU(m + 1)/S(U(1) × U(m)) and SO(2r + 1)/SO(2) × SO(2r − 1)).
The second integrals of motion represent the Hamiltonian of the multicomponent
DNSE (8) and (17) respectively provided the Poisson bracket is defined as in (98).
All this underlies the proof of the complete integrability of the multicomponent
DNSE in the sense of Liouville-Arnol’d, i.e., the construction of symplectic basis
and action-angle variables. To do this one needs to develop the generalized Fourier
transform interpretation of IST by introducing squared solutions (adjoint solutions)
and recursion operator [15, 34–36]. All this is a matter of a future study.
The results presented in the paper could be extended in several ways. Firstly, one
can study complete quadratic bundles

L(λ) = i∂x + U0(x, t) + λU1(x, t)− λ2J (109)

where U0(x, t) splits into a diagonal and off-diagonal part, U1(x, t) is strictly off-
diagonal and J is a diagonal matrix. In general the bundle (109) can not be as-
sociated with symmetric spaces unless U0 contains block diagonal part only and
U1 has a block structure complementary to U0 (otherwise symmetry conditions
(14) will be violated). As it is expected the theory of such bundles becomes more
complicated than that of bundles related to symmetric spaces.
We have been dealing in this paper with solutions satisfying zero boundary con-
ditions (the so-called trivial background solutions). These represent the simplest
class of solutions to the NEE. On the other hand finding nontrivial background so-
lutions is of current interest even for classical integrable equations like the scalar
nonlinear Schrödinger equation [32, 37]. Hence extending the results presented
here for potentials satisfying more complicated boundary conditions is another
meaningful direction of further developments.



298 Tihomir I. Valchev

Acknowledgements

The author would like to thank Professor Vladimir Gerdjikov and Dr. Rossen
Ivanov for fruitful discussions and support. This work was financially supported
by the Government of Ireland Postdoctoral Fellowship in Science, Engineering and
Technology.

References

[1] Ablowitz M. and Clarkson P., Soliton, Nonlinear Equations and Inverse Scattering,
London Math. Society Lecture Notes Series 149, Cambridge Univ. Press, Cambridge
1991.

[2] Athorne C. and Fordy A., Generalised KdV and MKdV Equations Associated with
Symmetric Spaces, J. Phys. A 20 (1987) 1377–1386.

[3] Drinfel’d V. and Sokolov V., Lie Algebras and Equations of Korteweg-de Vries Type,
Sov. J. Math. 30 (1985) 1975–2036.

[4] Fordy A., Derivative Nonlinear Schrödinger Equations and Hermitian Symmetric
Spaces, J. Phys. A: Math. & Gen. 17 (1984) 1235–1245.

[5] Fordy A. and Kulish P., Nonlinear Schrödinger Equations and Simple Lie Algebras,
Commun. Math. Phys. 89 (1983) 427–443.

[6] Gadzhiev I., Gerdzhikov V. and Ivanov M., Hamiltonian Structures of Nonlinear
Evolution Equations Associated with a Polynomial Bundle, J. Sov. Math. 37 (1987)
1186–1194.

[7] Gardner C., Greene J., Kruskal M. and Miura R., Method for solving the Korteweg-de
Vries Equation, Phys. Rev. Lett. 19 (1967) 1095–1097.

[8] Gerdjikov V., On Spectral Theory of Lax Operators on Symmetric Spaces: Vanishing
Versus Constant Boundary Conditions, J. Geom. Symmetry Phys. 15 (2009) 1–41.

[9] Gerdjikov V., Algebraic and Analytic Aspects of N -wave Type Equations, Contemp.
Math. 301 (2002) 35–68, nlin.SI/0206014.

[10] Gerdjikov V. and Ivanov M., The Quadratic Bundle of General Form and the Nonlin-
ear Evolution Equations I. Expansions over the “Squared” Solutions – Generalized
Fourier Transform, Bulg. J. Phys. 10 (1983) 13–26.

[11] Gerdjikov V. and Ivanov M., The Quadratic Bundle of General Form and the Nonlin-
ear Evolution Equations. II. Hierarchies of Hamiltonian Structures, Bulg. J. Physics
10 (1983) 130–143.

[12] Gerdjikov V., Grahovski G., Mikhailov A. and Valchev T., Polynomial Bundles and
Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric
Spaces, SIGMA 7 (2011) 096 (48 pp).

[13] Gerdjikov V., Kostov N. and Valchev T., Solutions of Multi-component NLS Models
and Spinor Bose-Einstein Condensates, Physica D 238 (2009) 1306–1310.

[14] Gerdjikov V., Kulish P. and Ivanov M., Quadratic Bundle and Nonlinear Equations,
TMF 44 (1980) 342–357.



On the Quadratic Bundles Related to Hermitian Symmetric Spaces 299

[15] Gerdjikov V., Vilasi G. and Yanovski A., Integrable Hamiltonian Hierarchies. Spec-
tral and Geometric Methods, Lecture Notes in Physics 748, Springer, Berlin 2008.

[16] Helgasson S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic
Press, New York 1978.

[17] Hirota R., The Direct Method in Soliton Theory, Cambridge Univ. Press, New York
2004.

[18] Ieda J., Miyakawa T. and Wadati M., Exact Analysis of Soliton Dynamics in Spinor
Bose-Einstein Condensates, Phys. Rev Lett. 93 (2004) 194102.

[19] Ivanov R., On the Dressing Method for the Generalised Zakharov-Shabat System,
Nuc. Phys. B 694 (2004) 509–524.

[20] Kaup D. and Newell A., An Exact Solution for a Derivative Nonlinear Schrödinger
Equation, J. Math. Phys. 19 (1978) 798–801.

[21] Konopelchenko B., The Polynomial Spectral Problem of Arbitrary Order: A General
Form of the Integrable Equations and Bäcklund Transformations, J. Phys. A: Math.
& Gen. 14 (1981) 3125–3141.

[22] Konopelchenko B., Introduction to Multidimensional Integrable Equations: The In-
verse Spectral Transform in 2 + 1 Dimensions, Series: Plenum Monographs in Non-
linear Physics, Spinger, Berlin 1993.

[23] Kuznetsov E. and Mikhailov A., On the Complete Integrability of the Two-
dimensional Classical Thirring Model, TMF 30 (1977) 303–314.

[24] Li L., Li Z., Malomed B., Mihalache D. and Liu W., Exact Soliton Solutions and
Nonlinear Modulation Instability in Spinor Bose-Einstein Condensates, Phys. Rev.
A 72 (2005) 033611.

[25] Manakov S., Contribution to the theory of Two-dimensional Stationary Self-focusing
of Electromagnetic Waves, JETP 56 (1973) 505–516.

[26] Mikhailov A. Integrability of the Two-dimensional Thirring Model, JETP Lett. 23
(1976) 356–358.

[27] Mikhailov A., Reductions in Integrable Systems. The Reduction Groups, JETF Lett.
32 (1980) 187–192.

[28] Mikhailov A., The Reduction Problem and the Inverse Scattering Method, Physica D
3 (1981) 73–117.

[29] Mio K., Ogino T., Minami K. and Takeda S., Modified Nonlinear Schrödinger Equa-
tion for Alfvén Waves Propagating along the Magnetic Field in Cold Plasmas, J.
Phys. Soc. Japan 41 (1976) 265–271.

[30] Mjølhus E., On the Modulational Instability of Hydromagnetic Waves Parallel to the
Magnetic Field, J. Plasma Physics 16 (1976) 321–334.

[31] Polyanin A., Zaitsev V. and Zhurov A., Method for Solving Nonlinear Equations of
Mathematical Physics and Mechanics (In Russian), FizMatLit, Moscow 2005.

[32] Tajiri M. and Watanabe Y., Breather Solutions to the Focusing Nonlinear Schrödinger
Equation, Phys. Rev. E 57 (1998) 3510–3519.

[33] Uchiyama M., Ieda J. and Wadati M., Multicomponent Bright Solitons in F = 2
Spinor Bose-Einstein Condensates, J. Phys. Soc. Japan 76 (2007) 74005–74010.



300 Tihomir I. Valchev

[34] Yanovski A., Recursion Operators and Bi-Hamiltonian Formulations of the Landau-
Lifshitz Equation Hierarchies, J. Phys. A: Math. & Gen. 39 (2006) 2409-2433.

[35] Yanovski A., On the Recursion Operators for the Gerdjikov, Mikhailov and Valchev
System, JMP 52 (2011) 082703(14pp).

[36] Yanovski A., Geometry of the Recursion Operators for Caudrey-Beals- Coifman Sys-
tem in the Presence of Mikhailov Type Zp Reductions, J. Geom. Symmetry Phys. 25
(2012) 77–97.

[37] Zakharov V. and Gelash A., Soliton on Unstable Condensate, (2011) 4 pages
nlin.SI:1109.0620.

[38] Zakharov V. and Manakov S. Resonant Interaction of Wave Packets in Nonlinear
Media, JETP Lett. 18 (1973) 413–417.

[39] Zakharov V., Manakov S., Novikov S. and Pitaevskii L., Theory of Solitons: The
Inverse Scattering Method, Plenum, New York 1984.

[40] Zakharov V. and Mikhailov A., On the Integrability of Classical Spinor Models in
Two-dimensional Space-time, Commun. Math. Phys. 74 (1980) 21–40.

[41] Zakharov V. and Shabat A., Integration of Nonlinear Equations of Mathematical
Physics by the Method of the Inverse Scattering Transform II (in Russian), Funct.
Anal. Appl. 13 (1979) 13–22.



International Conference on Integrability
Recursion Operators and Soliton Interactions
29-31 August 2012, Sofia, Bulgaria
B. Aneva, G. Grahovski
R. Ivanov and D. Mladenov, Eds
Avangard Prima, Sofia 2014, pp 301–324

ZAKHAROV-SHABAT SYSTEM WITH CONSTANT BOUNDARY
CONDITIONS. REFLECTIONLESS POTENTIALS AND END
POINT SINGULARITIES

TIHOMIR VALCHEV† ‡, ROSSEN IVANOV‡ AND VLADIMIR
GERDJIKOV†

†Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
1784 Sofia, Bulgaria
‡School of Mathematical Sciences, Dublin Institute of Technology, Dublin 8, Ireland

Abstract. We consider scalar defocusing nonlinear Schrödinger equation
with constant boundary conditions. We aim here to provide a self contained
pedagogical exposition of the most important facts regarding integrability of
that classical evolution equation. It comprises the following topics: direct
and inverse scattering problem and the dressing method.

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
2. Preliminaries. Zakharov-Shabat Spectral Problem with Constant Boundary

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
3. The End Points of the Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

3.1. Generic Case – Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
3.2. Virtual Eigenvalue – Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

4. Gelfand-Levitan-Marchenko Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
5. Dressing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
6. FAS and the Resolvent of L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

301



302 Tihomir Valchev, Rossen Ivanov and Vladimir Gerdjikov

1. Introduction

The integrability of the nonlinear Schrödinger equation (NLS)

iqt + qxx ± 2|q|2q = 0 (1)

where q : R2 → C is an infinitely smooth function and the subscripts mean par-
tial differentiations, was discovered in the pioneer papers by Zakharov and Shabat
[35, 36]. Historically, it was the second nonlinear evolution equations (NLEE)
solved by means of the inverse scattering method after Gardner, Greene, Kruskal
and Muira solved the Korteweg-de Vries equation [10, 11, 25] and proved its com-
plete integrability. NLS has numerous applications in physics and mathematics. In
nonlinear optics it models quasi-monochromatic wave packets propagating in non-
linear media [1] while in plasma physics it describes Langmuir waves in plasma
[9, 19]. Another application of NLS is in fluid mechanics [31] where it appears in
the context of deep water gravity waves. NLS also occurs in classical differential
geometry of curves moving in three dimensional Euclidean space [26].
Despite the fact that NLS and its multicomponent counterparts have been thor-
oughly investigated [1, 7, 8, 14, 17, 22, 29, 34] they are still an attractive subject
to study [6, 15, 18, 28, 32] due to recently established applications of the multi-
component NLS in Bose-Einstein condensation, see for example [16, 20, 30] and
references therein. There is also increasing interest in derivation and study of non-
trivial background solutions to NLS [2, 4, 5, 18]. The latter are claimed to model
extreme physical phenomena like rogue (freak) waves [3, 27]. All this motivated
the authors of the present paper to summarize the most important results about
scalar NLS with constant boundary conditions.
In the following we shall deal with the repulsive (or defocusing) NLS equation [36]

iqt + qxx − 2
(

|q|2 − ρ2
)

q = 0, ρ ∈ R+ (2)

where the extra linear term introduced above ensures that the x-asymptotics of q

lim
x→±∞

q(x, t) = ρeiθ± , θ± ∈ [0, 2π) (3)

are time independent. The purpose of the present paper is to give an accessible
summary of results on inverse scattering method applied to the NLS equation (2)
with boundary conditions (3). In doing this the we shall try, following [13, 14, 29],
to provide a self-contained pedagogical exposition.
The paper is organized as follows. In Section 2 we introduce basic notions and
facts needed for our further considerations. We outline the construction of the
Jost solutions and of the fundamental analytic solutions (FAS) of L. In Section 3
we derive the singularities of the Jost solutions and the FAS in the vicinity of the
points of the continuous spectrum of L. Sections 4 and Section 5 are dedicated to
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two methods for integration of a given integrable NLEE. These are the Gelfand-
Levitan-Marchenko integral equations and the Zakharov-Shabat’s dressing tech-
nique. Taking into account the form of Lax pair and the boundary conditions for
q(x, t) specified in (3) one can fit both of these methods to effectively generate
special solutions, dark solitons in particular. In Section 6 we introduce the kernel
of the resolvent of L expressed in terms of the FAS and derive its singularities at
the end points of the spectrum.

2. Preliminaries. Zakharov-Shabat Spectral Problem with Constant
Boundary Conditions

In this section we are going to discuss some basic properties of the Zakharov-
Shabat (AKNS) auxiliary linear system

i∂xΨ(x, t, λ) + (Q(x, t)− λσ3)Ψ(x, t, λ) = 0 (4)

where λ ∈ C is spectral parameter and σ3 = diag (1,−1) is one of Pauli matrices.
The potential

Q(x, t) =

(

0 q(x, t)
−q∗(x, t) 0

)

(5)

where ∗ stands for complex conjugation, is assumed to obey constant boundary
conditions

lim
x→±∞

Q(x, t) = Q± =

(

0 q±
−q∗± 0

)

, q± = ρeiθ± , θ± ∈ [0, 2π). (6)

Matrix-valued function Ψ is viewed as an arbitrary fundamental solution to (4),
i.e., its columns are given by two linearly independent solutions to the Zakharov-
Shabat linear system. It is our aim here to present the inverse scattering method
(ISM) for (4). In doing this we are going to formulate direct scattering problem for
Zakharov-Shabat systems with constant boundary conditions and analyze spectral
properties of scattering operator

L(λ) = i∂x +Q(x, t)− λσ3 (7)

introduced in (4). Our considerations shall mostly follow the ideas and the notation
used in [12, 13, 17].
The linear system (4) with boundary conditions (6) underlies the inverse scattering
method application to the defocusing NLS equation (2). It is equivalent to zero cur-
vature condition [L(λ), A(λ)] = 0 for L(λ) given by (7) and the second operator
being in the form

A(λ)Ψ(x, t, λ) = i∂tΨ+ (V0 + 2λQ− 2λ2σ3)Ψ(x, t, λ) = Ψ(x, t, λ)f(λ)

V0 =
(

ρ2 − |q|2
)

σ3 +
i

2
[σ3, Qx].

(8)
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The function f(λ) will be calculated below; it determines the dispersion law of the
NLS.
Due to intrinsic U(1) symmetry of equation (2) we can set one of the phases in the
asymptotic values of Q to be zero. Thus from now on we shall fix θ− = 0 and will
denote the other phase simply by θ in order to simplify our notation.
The space of allowed potentials Mρ, θ, i.e., the set of all smooth matrix-valued
functions of the form (5) satisfying boundary condition (6) for ρ and θ being
fixed, is not a linear space. However, the difference of any two allowed poten-
tials Q1(x, t) and Q2(x, t) ∈ Mρ, θ is such that Q1(x, t) − Q2(x, t) vanishes as
x → ±∞. Thus we can obtain the whole space Mρ,θ by adding up to a fixed
allowed potential any potential satisfying vanishing boundary conditions.
The form of the potential implies that it obeys the following symmetry condition

σ3Q
†(x, t)σ3 = Q(x, t) (9)

where † stands for Hermitian conjugation. Following the concepts by Mikhailov
[23, 24] one can interpret (9) in terms of a finite reduction group acting on the set
of solutions {Ψ(x, t, λ)} to the Zakharov-Shabat system. In our case the reduction
group is Z2 acting on the fundamental solutions in the following way

σ3Ψ̂
†(x, t, λ∗)σ3 = Ψ(x, t, λ) (10)

where Ψ(x, t, λ) is any of the Jost solutions of (4) and the ‘hat’ means the matrix
inverse

Ψ̂(x, t, λ) = [Ψ(x, t, λ)]−1 .

It proves to be convenient to introduce a gauge transform denoted by ϕ±(λ) to
diagonalize the asymptotic values of Q(x, t)− λσ3 when x→ ±∞, i.e., we have

ϕ±(λ)(Q± − λσ3)ϕ̂±(λ) = −j(λ)σ3 , j(λ) =
√

λ2 − ρ2 (11)

where ϕ± are given by

ϕ±(λ) =
1

√

2j(λ)(λ+ j(λ))

(

λ+ j(λ) −q±
−q∗± λ+ j(λ)

)

. (12)

Thus the spectral parameter λ lives in a two-sheet Riemann surface S ≡ S+ ∪ S−

associated with j(λ). To construct S one cuts the complex plane from −∞ to −ρ
and from ρ to ∞ along real axis. The sheets S+ and S− are determined by

S+ : Im j(λ) > 0, S− : Im j(λ) < 0. (13)

The transformϕ±(λ) allows one to define Jost solutions through the equality below

lim
x→∞

ψ(x, t, λ)Ê+(x, λ) = 11, lim
x→−∞

φ(x, t, λ)Ê−(x, λ) = 11 (14)

where
E±(x, λ) = ϕ̂±(λ)e

−ij(λ)σ3x (15)
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are solutions to the equation

i∂xE± + (Q± − λσ3)E± = 0.

It straightforwardly follows from (15) that ψ(x, t, λ) and φ(x, t, λ) are unimodular
matrices. The transition matrix

T (t, λ) = ψ̂(x, t, λ)φ(x, t, λ) (16)

between the Jost solutions is called scattering matrix. As a result of the reduction
(10) we deduce that the scattering matrix obeys the symmetry

σ3T̂
†(t, λ∗)σ3 = T (t, λ). (17)

From the compatibility of the linear problems (4) and (8) we find that the time
evolution of T is determined by

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t (18)

where the dispersion law f(λ) for the NLS is given by

f(λ) = lim
x→±∞

V (x, t, λ) = −2λj(λ)σ3. (19)

Further on in text the variable t will not be essential so we shall omit it.
Let us now discuss the spectral properties of the scattering operator. Generally
speaking the spectrum of L(λ) consists of a continuous and a discrete part. The
operator (7) is equivalent to a self-adjoint eigenvalue problem

LΨ ≡ iσ3
∂Ψ

∂x
+ σ3Q(x)Ψ(x, λ) = λΨ(x, λ) (20)

and therefore its spectrum must be on the real axis. The continuous part of its
spectrum is determined by equality Im j(λ) = 0, i.e., it coincides with set Rρ =
(−∞,−ρ)∪ (ρ,∞). The discrete eigenvalues of L(λ) are simple and must belong
to (−ρ, ρ). The Jost solutions and the scattering matrix are defined for λ ∈ Rρ

only. To see this one needs to introduce the auxiliary functions

ξ+(x, λ) = ϕ+(λ)ψ(x, λ)Ê+(x, λ)ϕ̂+(λ)

ξ−(x, λ) = ϕ−(λ)φ(x, λ)Ê−(x, λ)ϕ̂−(λ)
(21)

which satisfy the differential equation

i∂xξ± + Q̃+(x, λ)ξ± − j(λ)[σ3, ξ±] = 0 (22)

where
Q̃±(x, λ) = ϕ±(λ)(Q(x)−Q±)ϕ̂±(λ).

Equivalently, ξ± can be viewed as solutions to the Volterra type integral equation

ξ±(x, λ) = 11 + i

∫ x

±∞

eij(λ)σ3(y−x)Q̃±(y, λ)ξ±(y, λ)e
−ij(λ)σ3(y−x)dy. (23)
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Let us consider now the function ξ+. It is easily seen from the integral equation
that the second column of ξ+ is analytic on S+ hence the second column of ψ(x, λ)
is analytic on S+. Similarly, the first column of φ(x, λ) are analytic on S+ while
the second one as well as the first column of ψ(x, λ) are analytic on S−. That is
why we will denote the Jost solutions by

ψ(x, λ) = ||ψ−(x, λ), ψ+(x, λ)||, φ(x, λ) = ||φ+(x, λ), φ−(x, λ)|| (24)

where the superscript + (respectively −) refers to the analyticity properties of the
corresponding column on the sheet S+ (respectively on S−).
As a result of the above considerations one can construct another pair of solutions
χ+ and χ− which are analytic in S+ and S− respectively. This is done using the
formulae below

χ+(x, λ) ≡ ||φ+(x, λ), ψ+(x, λ)|| = φ(x, λ)S+(λ) = ψ(x, λ)T−(λ)

χ−(x, λ) ≡ ||ψ−(x, λ), φ−(x, λ)|| = φ(x, λ)S−(λ) = ψ(x, λ)T+(λ)
(25)

where

S+(λ) =

(

1 −b∗(λ)
0 a(λ)

)

, T−(λ) =

(

a(λ) 0
b(λ) 1

)

(26)

S−(λ) =

(

a∗(λ) 0
−b(λ) 1

)

, T+(λ) =

(

1 b∗(λ)
0 a∗(λ)

)

. (27)

The triangular matrices S±(λ) and T±(λ) are LU-decomposition of the scattering
matrix T (λ)

T (λ) =

(

a(λ) b∗(λ)
b(λ) a∗(λ)

)

= T−(λ)Ŝ+(λ) = T+(λ)Ŝ−(λ). (28)

Due to reduction (10) it is seen that χ+ and χ− satisfy relation

σ3
[

χ̂+(x, λ∗)
]†
σ3 = χ−(x, λ). (29)

The fundamental analytic solutions satisfy the following interrelation

χ−(x, λ) = χ+(x, λ)G(λ), λ ∈ Rρ. (30)

This is a manifestation of the fact that the fundamental analytic solutions satisfy
local Riemann-Hilbert problem [17, 29, 34].
It also follows from (25)–(27) that

detχ+(x, λ) = a(λ). (31)

Therefore a(λ) is an analytic function on the whole sheet S+. In what follows
we will need to know the structure of χ+ and χ− and their inverse in the vicinity
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of discrete eigenvalues {λj}Nj=1 of the operator L(λ). The discrete eigenvalues are
simple zeroes of a(λ), i.e., in vicinity of λj we have the following Taylor expansion

a(λ) = (λ− λj)

(

ȧj +
1

2
äj(λ− λj) + · · ·

)

(32)

where dot stands for the differentiation with respect to λ. Due to (31) at any point
λj the columns of χ+(x, λj) are proportional to each other, i.e., there exists bj ∈ C

such that

φ+j (x) = bjψ
+
j (x), φ−j (x) =

1

b∗j
ψ−

j (x) (33)

where φ±j (x) = φ±(x, λj and ψ±

j (x) = ψ±(x, λj . Thus we find

χ+
j (x, λj) = ψ+

j (x)(bj , 1) = φ+j (x)(1, 1/bj)

χ−

j (x, λj) = ψ−

j (x)(1,−b
∗

j ) = φ−j (x)(−1/b∗j , 1).
(34)

In what follows we will need similar formulae also for the inverse of χ±(x, λ) for
λ ' λj . It is easy to see that

χ̂+(x, λ) =
1

a(λ)

(

ψ̃+

−φ̃+

)

, χ̂−(x, λ) =
1

a∗(λ)

(

φ̃−

−ψ̃−

)

(35)

where the operation ‘tilde’ applied to the vector
(

y1
y2

)

maps it onto the row

(y2,−y1). Thus we obtain

χ̂+(x, λ) '
λ→λj

(

1
−bj

)

ψ̃+
j

(λ− λj)ȧj
'

(

−1/bj
1

)

φ̃+j
(λ− λj)ȧj

χ̂−(x, λ) '
λ→λj

(

1
−1/b∗j

)

ψ̃−

j

(λ− λj)ȧ∗j
' −

(

b∗j
1

)

φ̃−j
(λ− λj)ȧ∗j

·

(36)

Given the potential Q(x) one can obtain the Jost solutions uniquely by solving the
integral equations (23). The Jost solutions in turn determine uniquely the scattering
matrix T (λ). Q(x) contains one independent complex-valued function q(x) of x.
Thus it is natural to expect that only one of the coefficients of T (λ) for λ ∈ Rρ,
will be independent.
At the same time the matrix elements of T (λ) (28) are determined by the complex-
valued functions a(λ) and b(λ) and their complex conjugate, satisfying the con-
dition |a|2 − |b|2 = 1. It is important that a(λ) (respectively a∗(λ)) are analytic
functions of λ for λ ∈ S+ (respectively λ ∈ S−). This fact allows one to deter-
mine a(λ) using its values on the cuts Rρ and the set of its zeroes λj . We assume
that a(λ) has a finite number of zeroes λj ; it is well known that a(λ) may have
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only simple zeroes [13, 14, 29]. Skipping the details we introduce two equivalent
minimal sets of scattering data

T1 ≡ T1,c ∪ T1,d, T2 ≡ T2,c ∪ T2,d (37)

where
T1,c ≡ {ρ(λ), λ ∈ Rρ}, T1,d ≡ {Cj , λj}

N
j=1

T2,c ≡ {τ(λ), λ ∈ Rρ}, T2,d ≡ {Mj , λj}
N
j=1.

(38)

The reflection coefficients ρ(λ) and τ(λ) and the coefficients Cj and Mj are given
by

ρ(λ) =
b(λ)

a(λ)
, τ(λ) = −

b∗(λ)

a(λ)
, Cj =

bj
ȧj
, Mj =

1

bj ȧj
· (39)

Now we need to compute the asymptotics of the FAS solutions for large values of
|λ|. The results are summarized in the tables below

Im λ > 0, λ ∈ S+ Im λ < 0, λ ∈ S+

χ+(x, λ)eij(λ)σ3x

(

1 0
0 1

)

− i

(

0 eiθ+

e−iθ− 0

)

a+(λ) 1 ei(θ+−θ−)

(40)

Im λ > 0, λ ∈ S− Im λ < 0, λ ∈ S−

χ−(x, λ)eij(λ)σ3x − i

(

0 eiθ−

e−iθ+ 0

) (

1 0
0 1

)

a−(λ) e−i(θ+−θ−) 1.

(41)

The functions b±(λ) in general do not admit analytic continuations, however if one
considers special functional classes one can argue that [17, 29]

lim
|λ|→∞

b(λ) = 0.

3. The End Points of the Spectrum

The Lax operator L with constant boundary condition is one of the basic examples
of ordinary differential operator whose continuous spectrum multiplicity varies.
Obviously the continuous spectrum on the rays Rρ ≡ (−∞,−ρ) ∪ (ρ,∞) has
multiplicity 2, while on the lacuna (−ρ, ρ) it has vanishing multiplicity.
In the limit λ→ λερ the matrices ϕ± become singular. So in order to introduce the
Jost solutions we will need regularized definitions, see below. Besides, we have to
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take into account that the eigenfunctions of Lερ,as are given by

L±as|λ=ερEερ = 0, Eερ =

(

1 iρxeiθ±

ερe−iθ± iρεx+ 1

)

(42)

where ε = ±1. The inverse of Eερ is

Êερ =

(

iρεx+ 1 −ρxeiθ±

−ερeiθ± 1

)

. (43)

Thus the Jost solutions for λ = ερ may be defined by

lim
λ→ερ

lim
x→∞

Êερψ(x, ερ) = 11, lim
λ→ερ

lim
x→−∞

Êερφ(x, ερ) = 11. (44)

This definition shows that the Jost solutions and the FAS may develop singularities
at the end points of the spectrum. This definition is valid for the generic case,
because the Lax operator L will have two linearly independent eigenfunctions also
at the end points λ = ερ. Along with the generic case we will consider also the
possibility of virtual eigenvalues at the end points. In general both possibilities
have been analyzed in [29]. We will present slightly different approach which is
gauge covariant.
Skipping the details we collect the formulae, giving the asymptotics of the Jost
solutions, the FAS and the scattering matrix for λ→ ερ.

3.1. Generic Case – Asymptotics

The Jost solutions φ(x, λ) and ψ(x, λ) develop singularities at the end points of
the spectrum, which are consequence of the singularity of E±(x, λ). Indeed, for
λ→ ερ we have

E±(x, λ) =

√

ρ

j(λ)

(

Eε,0 +
j(λ)

2ρ
Eε,1 +O(j2)

)

e−ij(λ)xσ3

Eε,0 =

(

1 −eiθ±

−e−iθ± 1

)

, Eε,1 =

(

1 eiθ±

e−iθ± 1

)

.

(45)

In the vicinity of end points λ ' ερ the Jost solutions become

ψ±(x, λ) =

√

ρ

2j(λ)

(

ψ±

ερ,0(x) + j(λ)ψ±

ερ,1(x) +O(j2)
)

φ±(x, λ) =

√

ρ

2j(λ)

(

φ±ερ,0(x) + j(λ)φ±ερ,1(x) +O(j2)
)

(46)
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aερ =
aερ,0
j(λ)

+ aερ,1 +O(j), bερ = −ε
ibερ,0
j(λ)

+ bερ,1 +O(j)

ψ−

ερ(x) = εiψ+
ερ(x), φ+ερ(x) = εiφ−ερ(x)

(47)

i.e.,

lim
λ→±ρ

aερ
bερ

= εi.

Similar relations can be derived also for the asymptotic values of the FAS, namely

χ+
ερ(x, λ) ≡ ||φ+ερ(x), ψ

+
ερ(x)||

=

√

ρ

2j(λ)

(

χ+
ερ,0(x) + j(λ)χ+

ερ,1(x) +O(j2)
)

χ−

ερ(x, λ) ≡ ||ψ−

ερ(x), φ
−

ερ(x)||

=

√

ρ

2j(λ)

(

χ−

ερ,0(x) + j(λ)χ−

ερ,1(x) +O(j2)
)

(48)

as well as for their inverse

χ̂+
ερ(x, λ) =

√

2j(λ)

ρ

(

χ̂+
ερ,0(x)− j(λ)χ̂+

ερ,0(x)χ
+
ερ,1(x)χ̂

+
ερ,0(x) +O(j2)

)

(49)

χ̂−

ερ(x, λ) =

√

2j(λ)

ρ

(

χ̂−

ερ,0(x)− j(λ)χ̂−

ερ,0(x)χ̂
−

ερ,1(x)χ̂
−

ερ,0(x) +O(j2)
)

where χ̂±

ερ,0(x) = (χ−

ερ,0(x))
−1.

3.2. Virtual Eigenvalue – Asymptotics

In this case the Jost solutions become degenerate for λ = ερ, i.e., the matrices
ψερ,0(x, λ) are φερ,0(x, λ) become degenerate

ψερ,0(x) =

√

ρ

2j(λ)
ψ−

ερ,0(x)(1, εi), φερ,0(x) =

√

ρ

2j(λ)
φ+ερ,0(x, λ)(1, εi)

(50)

Then both a(λ) and b(λ) are regular for λ→ ±ρ

lim
λ→ερ

aερ = aερ,1, lim
λ→ερ

bερ = bερ,1. (51)
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Similarly we can analyze the behavior of the FAS in the vicinity of the end points
of the spectrum. The results are

χ+
ερ(x) =

√

ρ

2j(λ)
ψ+
ερ(x)(bερ, 1) =

√

ρ

2j(λ)
φ+ερ(x)(1, 1/bερ)

χ−

ερ(x, λj) =

√

ρ

2j(λ)
ψ−

ερ(x)(1,−b
∗

ερ) =

√

ρ

2j(λ)
φ−ερ(x)(−1/b∗ερ, 1).

(52)

and

χ̂+(x, λ) '
λ→ερ

√

ρ

2j(λ)

(

1
−bερ

)

ψ̃+
ερ '

√

ρ

2j(λ)

(

−1/bερ
1

)

φ̃+ερ

χ̂−(x, λ) '
λ→ερ

−

√

ρ

2j(λ)

(

1/b∗ερ
1

)

ψ̃−

ερ '

√

ρ

2j(λ)

(

1
bερ

)

φ̃−ερ.

(53)

We will use this in Section 6 below for analyzing the singularities of the resolvent
at the end points of the spectrum.

4. Gelfand-Levitan-Marchenko Equations

An effective method to derive soliton solutions and the corresponding eigenfunc-
tions is based upon the Gelfand-Levitan-Marchenko integral equations (GLM).
Here we just briefly outline the basic facts of derivation of GLM [13, 17, 29].
Let us consider the linear problems

L0Ψ0 ≡ i∂xΨ0 + (Q0 − λσ3)Ψ0 = 0 (54)

LΨ ≡ i∂xΨ+ (Q− λσ3)Ψ = 0 (55)

where both potentials are of the form (5) and have equal asymptotic values as
x→ ∞, i.e.,

lim
x→∞

Q0(x) = lim
x→∞

Q(x) = Q+. (56)

The Jost solutions of (54) and (55) by definition obey the equalities

lim
x→∞

ψ0(x, λ)Ê+(x, λ) = 11, lim
x→∞

ψ(x, λ)Ê+(x, λ) = 11. (57)

We assume now thatQ0 is known and we shall refer to it as bare (or seed) potential,
while the other one, to be found, will be called dressed potential

Remark 1. It is not possible for that the bare potential and the dressed one share
the same asymptotic values both at x → −∞ and x → ∞. For the derivation of
GLM it suffices to have consistency of just one of the asymptotics, say as x→ ∞.
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The dressed Jost solution can be expressed from the bare one through the integral
transformation

ψ(x, λ) = ψ0(x, λ) +

∫ x

∞

dy Γ+(x, y)ψ0(y, λ)

φ(x, λ) = φ0(x, λ) +

∫ x

−∞

dy Γ−(x, y)φ0(y, λ)

(58)

where the integral kernels Γ± satisfy

lim
y→∞

Γ+(x, y) = 0, lim
y→−∞

Γ−(x, y) = 0. (59)

In order for transformation (58) to be consistent the kernel must satisfy certain
differential constraints. Indeed, after substituting (58) into (55) and taking into
account that the bare Jost solution fulfils (54) one obtains the following relations

i
∂Γ±(x, y)

∂x
+ iσ3

∂Γ±(x, y)

∂y
σ3 +Q(x)Γ±(x, y)− σ3Γ±(x, y)σ3Q0(y) = 0

(60)
Q(x)−Q0(x) + i(Γ±(x, x)− σ3Γ±(x, x)σ3) = 0.

Obviously the solutions of (60) will be parametrized by the scattering data of both
operators L0 and L.
Let us develop this idea first considering the Jost solution ψ(x, λ) and the trans-
formation operator with kernel Γ+(x, y). This transformation operator maps the
Jost solution ψ0(x, λ) of the ‘naked’ operator L0 into the Jost solution ψ(x, λ) of
the ‘dressed’ operator L. Each of these operators has its own scattering data (38):
reflection coefficients ρ0(λ) and ρ(λ) and sets of discrete eigenvalues

D0 ≡ {λ0j : a0(λ0j) = 0}N0

j=1, D ≡ {λj : a(λj) = 0}Nj=1.

Note that some of the eigenvalues of L0 may coincide with the eigenvalues of L.
The generic solution of (60) can be presented in the form

Γ+(x, y) =
1

2π

∫

Rρ

dλ
(

c+(λ)ψ
+(x, λ)ψ̂+

0 (y, λ)− c∗+(λ)ψ
−(x, λ)ψ̂−

0 (y, λ)
)

σ3

(61)
−
∑

λj∈D

cjψ
+
j (x)ψ̃

+
0,j(y)σ3 +

∑

λj∈D0

c0jψ
+
0j(x)ψ̃

+
0,j(y)σ3

where ψ+
0j(x) = ψ+

0 (x, λj) and ψ+
j (x) = ψ+(x, λj). The coefficients cj , c0j and

the function c(λ) can be expressed in terms of the scattering data, e.g. c(λ) =
ρ(λ)− ρ0(λ).
By ψ±

0 (x, λ) and ψ±(x, λ) we mean the corresponding columns of Jost solutions
(see (24)) to (54) and (55) respectively, while ψ̃j(x) and ψ̃0,j(x) are row vectors
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of inverse Jost solutions (see (35)). Obviously they satisfy

i∂xψ
±

0 (x) + (Q0(x)− λσ3)ψ
±

0 (x, λ) = 0

i∂xψ
±(x) + (Q(x)− λσ3)ψ

±(x, λ) = 0
(62)

and

i∂xψ̃
±

0 (x)− ψ̃±

0 (x, λ) (Q0(x)− λσ3) = 0

i∂xψ̃
±(x)− ψ̃±(x, λ) (Q(x)− λσ3) = 0

(63)

respectively. Therefore ψ+
0j(x), ψ

+
j (x) and ψ̃+

0j(x), ψ̃
+
j (x) will be solutions to (62)

and (63) with λ = λ0j and λ = λj respectively.
Taking into account that from equation (58) there follows

ψ±(x, λ) = ψ±

0 (x, λ) +

∫ x

∞

dy Γ+(x, y)ψ
±

0 (y, λ)

ψ±

j (x) = ψ±

0j(x) +

∫ x

∞

dy Γ+(x, y)ψ
±

0j(y)

(64)

we can easily rewrite equation (61) as the well GLM equation

Γ+(x, y) + F+(x, y) +

∫ x

∞

dz Γ+(x, z)F+(z, y) = 0 (65)

where

F+(x, y) =
−1

2π

∫

Rρ

dλ
(

c(λ)ψ+
0 (x, λ)ψ̂

+
0 (y, λ)− c∗(λ)ψ−

0 (x, λ)ψ̂
−

0 (y, λ)
)

σ3

(66)
+
∑

λj∈D

cjψ
+
0j(x)ψ̃

+
0,j(y)σ3 −

∑

λj∈D0

c0jψ
+
0j(x)ψ̃

+
0,j(y)σ3.

This is the most general form of the GLM equation which relates two Lax oper-
ators L and L0 with generic choice for their spectral data. If one knows the Jost
solutions of the ‘naked’ operator L0 then solving the GLM equation one can con-
struct the Jost solutions of the ‘dressed’ operator L. However, the Jost solutions
of L0 for generic spectral data (i.e., non-vanishing ρ0(λ)) can not be evaluated ex-
plicitly. There is however, a special class of potential – the so-called reflectionless
potentials, that can be constructed explicitly by solving the GLM equation
Indeed, let us now assume that theQ0(x, t) = Q+. Then ψ0(x, λ) = E+(x, λ) and
the kernel F is degenerate, i.e., we have c(λ) = c0(λ) = 0, N0 = 0 and N = 1. In
this special case GLM equations reduces to a set of linear algebraic equations and
one can construct the solution explicitly. For N = 1 equations (61) and (64) lead
to the following result for the dressed solutions

ψ+
1 (x) =

(

1− c1

∫ x

∞

(

ψ̃+
0,1(y)|ψ

+
0,1(y)

)

)−1

ψ+
0,1(x). (67)
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Taking into account the explicit form of E+(x, λ) (see equalities (12) and (15))
one can perform the integration above to obtain

ψ+
1 (x) =

1

1 + V0(x)
ψ+
0,1(x), V0(x) =

c1ρe
−2
√

ρ2−λ2
1
xeiθ

2i(ρ2 − λ21)
· (68)

After substituting (68) into (61) for the transformation operator kernel we get

Γ+(x, y) =
ρ sin θ1V0(x)e

√
ρ2−λ2

1
(x−y)

1 + V0(x)

(

1 ei(θ−θ1)

e−i(θ−θ1) 1

)

. (69)

Thus we have all information needed to find the dressed potential. Making use of
relation (60) one derives the following result

Q(x) = Q+ + ic1σ3

[

ψ+
1 (x)ψ̃

+
0,1(x), σ3

]

=
ρ

1 + V0(x)

(

0 eiθ
(

1 + e−2iθ1V0(x)
)

−e−iθ
(

1 + e2iθ1V0(x)
)

0

)

.
(70)

We remind that λ1 + i
√

ρ2 − λ21 = ρeiθ1 and one can pick up the discrete eigen-
value λ1 in such a way that θ = 2θ1 is fulfilled.
Now we shall construct the one-soliton eigenfunctions. In order to do so we sub-
stitute (69) into (58) and perform the integration required. The result reads

ψ(x, λ) =





A− f1
V0

1+V0
eiθ
(

B + f2
V0

1+V0
e−iθ1

)

e−iθ
(

B − f1
V0

1+V0
eiθ1
)

A+ f2
V0

1+V0



 e−ij(λ)σ3x (71)

where

f1 =

√

ρ2 − λ21(A+Be−iθ1)

ij(λ) +
√

ρ2 − λ21
, A(λ) =

√

λ+ j(λ)

2j(λ)

f2 =

√

ρ2 − λ21(A+Beiθ1)

ij(λ)−
√

ρ2 − λ21
, B(λ) =

√

λ− j(λ)

2j(λ)
·

(72)

After an elementary transformation of expressions above the dressed Jost solution
are rewritten as follows

ψ(x, λ) =

{

11 +
i
√

ρ2 − λ21V0(x)

(λ− λ1)(1 + V0(x))

(

1 −eiθ/2

e−iθ/2 −1

)

}

E+(x, λ). (73)

Similarly, one can use the second transformation operator Γ−(x, y) in equation
(58) connecting the other pair of Jost solutions φ(x, λ) and φ0(x, λ), and apply the
same considerations as before. The dual’ GLM equation is

Γ−(x, y) + F−(x, y) +

∫ x

−∞

dz Γ−(x, z)F−(z, y) = 0. (74)
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If we choose a generic kernel

F−(x, y) =
1

2π

∫

Rρ

dλ
(

c−(λ)φ
+
0 (x, λ)φ̂

+
0 (y, λ)− c∗−(λ)φ

−

0 (x, λ)φ̂
−

0 (y, λ)
)

σ3

(75)
−
∑

λj∈D

c−j φ
+
0j(x)φ̃

+
0,j(y)σ3 +

∑

λj∈D0

c−0jφ
+
0j(x)φ̃

+
0,j(y)σ3

then its generic solution of (60) can be presented in the form

Γ−(x, y) =
1

2π

∫

Rρ

dλ
(

c−(λ)φ
+(x, λ)φ̂+0 (y, λ)− c∗−(λ)φ

−(x, λ)φ̂−0 (y, λ)
)

σ3

(76)
−
∑

λj∈D

c−j φ
+
j (x)φ̃

+
0,j(y)σ3 +

∑

λj∈D0

c−0jφ
+
j (x)φ̃

+
0,j(y)σ3

where φ+0j(x) = φ+0 (x, λj) and φ+j (x) = φ+(x, λj). The coefficients c−j , c
−

0j and
the function c−(λ) again can be expressed in terms of the scattering data, e.g.
c−(λ) = τ(λ)− τ0(λ).
If we take the simplest nontrivial kernel with N = 1 and Q0 = Q− then the final
result for the dressed potential reads

Q(x) = Q+ + ic1σ3

[

φ+1 (x)φ̃
+
0,1(x), σ3

]

=
ρ

1 + Ṽ0(x)

(

0 1 + eiθṼ0(x)

−
(

1 + e−iθṼ0(x)
)

0

)

(77)

where

Ṽ0(x) =
c1ρe

2
√

ρ2−λ2
1
x

2i(ρ2 − λ21)
· (78)

The corresponding Jost solution φ(x, λ) is given by

φ(x, λ) =

{

11 −
i
√

ρ2 − λ21Ṽ0(x)

(λ− λ1)(1 + Ṽ0(x))

(

1 −eiθ/2

e−iθ/2 −1

)

}

E−(x, λ). (79)

Let us now calculate the dressed scattering matrix

T (λ) = lim
x→−∞

ψ(x, λ)φ(x, λ) = diag (a(λ), 1/a(λ)) (80)

where

a(λ) =
A−Beiθ1

A−Be−iθ1
=
λ+ j − λ1 − ij1
λ+ j − λ1 + ij1

· (81)

The dressed fundamental analytic solutions are constructed through equalities

χ+(x, λ)eijσ3x = u(x, λ)

(

A Beiθ

B A

)

(82)
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where the dressing factor reads

u(x, λ) =

{

11 +
f2(A−Beiθ1)

(1 + V0(x))

(

1
e−iθ1

)

(

1, V0e
i(θ−θ1)

)

}

e−ijσ3x. (83)

5. Dressing Method

The dressing method is another indirect method to solve a nonlinear evolution
equation, i.e., it allows one to find a particular solution from a known one. For
this to be done one uses substantially the existence of Lax representation and the
connection between ISM and Riemann-Hilbert problem [17, 21, 34, 37].
Let us consider once again the auxiliary linear problems (54) and (55). We shall
denote by g the dressing transform Ψ0 → Ψ. By comparing (54) and (55) we see
that g satisfies

i∂xg +Qg − gQ0 − λ[σ3, g] = 0. (84)

We are going to use a dressing factor in the form

g(x, λ) = 11 +
A(x)

λ− λ1
, λ1 ∈ (−ρ, ρ). (85)

Due to reduction (10) the dressing factor obeys the following symmetry condition

σ3ĝ
†(x, λ∗)σ3 = g(x, λ). (86)

Hence the inverse factor ĝ reads

ĝ(x, λ) = 11 +
σ3A

†(x)σ3
λ− λ1

· (87)

Let us evaluate the limit |λ| → ∞ in equation (84). As a result we obtain a relation
between bare potential Q0 and dressed one Q, namely

Q = Q0 + [σ3, A]. (88)

Thus we can find Q if we only know the residue A. As it turns out the latter can
be expressed in terms of a fundamental solution of the bare linear problem (54). In
order to find A we consider the identity gĝ = 11 which gives rise to the following
algebraic relations

Aσ3A
† = 0 (89)

A+ σ3A
†σ3 = 0. (90)

It follows from (89) that A(x) is a degenerate matrix so there exist two vectors
X(x) and F (x) such that A = XF T . Substituting this decomposition into (89)
we obtain

F Tσ3F
∗ = 0. (91)
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From (89), (90) and (91) it follows that

X = −i
σ3F

∗

α
(92)

for some real function α to be determined further on. F and α can be found if
one considers equation (84). We shall skip all technical details here and give the
final result. Both F and α are expressed through a solution Ψ0 to the bare linear
problem in the following way

F T (x) = F T
0 Ψ̂0(x, λ1) (93)

α(x) = iF T
0 Ψ̂0(x, λ1)∂λ|λ=λ1

Ψ0(x, λ)C0(λ1)σ3F
∗

0 + α0 (94)

where the two-vector1 F0 as well as α0 ∈ R are constants of integration. The
constant matrix C0(λ1) appears in the reduction condition (10), namely

C0(λ) = Ψ̂0(x, λ)σ3Ψ̂
†

0(x, λ
∗)σ3. (95)

The final step in our considerations consists in recovering the time evolution in all
quantities. To achieve this one can use the following rule

F T
0 → F T

0 e−if(λ1)t

α0 → α0 − F T
0

df

dλ
(λ1)C0(λ1)σ3F

∗

0 t.
(96)

Let us recall that f(λ) is the dispersion law of the NLEE under consideration.
Formulae (96) are derived by analyzing the equation

igt + V g − gV (0) = 0 (97)

where V (0) and V are involved in the Lax operators

A0(λ) = i∂t + V (0)(x, t, λ)

A(λ) = i∂t + V (x, t, λ)

respectively. Let us illustrate this general scheme in the following example.

Example 2. Let us consider the case when the bare solution is constant, i.e., q0 =
ρ. Then the corresponding fundamental solution is given by

Ψ0(x, λ) = ϕ̂0(λ)e
−ij(λ)σ3x (98)

where ϕ0(λ) is given by equation (12). For our purposes it suffices to pick up the

polarization vector F0 as follows F0 =

(

0
1

)

. Then the two-vector F and the

1The vector F0 is usually called polarization vector.



318 Tihomir Valchev, Rossen Ivanov and Vladimir Gerdjikov

scalar function α acquire the form

F (x) =
e−ij(λ1)x

√

2j(λ1)(λ1 + j(λ1))

(

−ρ
λ1 + j(λ1))

)

α(x) = −
ρe−2ij(λ1)x

2j2(λ1)
+ α0.

(99)

Finally substitution of all these results into (88) leads to

q(x) = ρ
1 + e2iθ1e2

√
ρ2−λ2

1
(x−x0)

1 + e2
√

ρ2−λ2
1
(x−x0)

tan θ1 =

√

ρ2 − λ21
λ1

, x0 =
1

2
√

ρ2 − λ21
ln

2(ρ2 − λ21)α0

ρ

(100)

for the reflectionless potential. It coincides with the result obtained in the previous
section, see (70). In order to recover the t-dependence in (100) we have to replace
x with x+ 2λ1t. Thus we have

q(x, t) = ρ
1 + e2iθ1e2

√
ρ2−λ2

1
(x+2λ1t−x0)

1 + e2
√

ρ2−λ2
1
(x+2λ1t−x0)

· (101)

This is the well-known dark soliton for the defocusing NLS [13, 29]. It is imme-
diately seen that asymptotic value of the dark soliton as x → −∞ coincide with
that of vacuum solution while the other asymptotic differs, i.e., Q and Q0 belong
to different phase spaces, M2θ1 and M0 respectively. This means that in general
the dressing procedure does not respect the constant boundary conditions. This
motivates one to introduce a more general space

Mρ =
⋃

θ

Mρ,θ

which is dressing invariant. The the dressing procedure describe above will map
Mρ,θ into Mρ,θ+2θ1 . �

In order to find more complicated solutions one can pursue either of the following
two ways: apply the discussed procedure to the solution already dressed and thus
generate a sequence of solutions; or use a multiple poles dressing factor in the form

g(x, t, λ) = 11 +
N
∑

k=1

Ak(x, t)

λ− λk
, λk ∈ R. (102)

In the latter case the dressed solution can be obtained through the following relation

Q = Q0 +
N
∑

k=1

[σ3, Ak]. (103)
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As before in order to find residues of the dressing factor we consider the algebraic
relations:

Akσ3A
†

k = 0 (104)

Akσ3Ω
†

kσ3 + σ3A
†

kσ3Ωk = 0 (105)

where

Ωk(x, t) = 11 +
∑

j 6=k

Aj(x, t)

λk − λj
·

Relation (104) means that each residue Ak(x, t) is a degenerate matrix hence there
exists couples of vectors Xk and Fk, k = 1, . . . , N such that Ak = XkF

T
k . Due to

(104) the components of Fk are not independent but satisfy the relations

F T
k σ3F

∗

k = 0. (106)

Relation (105) can be reduced to

Ωkσ3F
∗

k = iαkXk (107)

for some matrices αk(x), yet to be determined. The system (107) can be viewed
as a linear system for the vectors Xk

σ3F
∗

k =
N
∑

j=1

BkjXj (108)

where

Bkk = iαk, Bkj =
F T
j σ3F

∗

k

λj − λk
, k 6= j.

This allows us to express Xk in terms of Fk and αk Similarly to the one-pole case
the Fk and αk are expressed through a seed solution as follows

F T
k (x) = F T

k,0Ψ̂0(x, λk) (109)

αk(x) = iF T
k (x)∂λΨ0(x, λk)C0(λk)σ3F

∗

k,0 + αk,0 (110)

where Fk,0 and αk,0 are integration constants. Finally in order to recover the time
dependence one uses the following formulae

F T
k,0 → F T

k,0e
−if(λk)t (111)

αk,0 → αk,0 − F T
k,0

df

dλ
(λk)C0(λk)σ3F

∗

k,0t. (112)
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6. FAS and the Resolvent of L

The FAS play important role in analyzing the spectral properties of the Lax opera-
tor. Here we will demonstrate that the FAS can be used to construct the kernel of
the resolvent of L.
Let us now show how the resolvent R(λ) can be expressed through the FAS of
L(λ). Indeed, let us write down R(λ) in the form

R(λ)f(x) =

∫

∞

−∞

R(x, y, λ)f(y) (113)

where the kernel R(x, y, λ) of the resolvent is given by

R±(x, y, λ) =
1

i
χ±(x, λ)Θ±(x− y)χ̂±(y, λ). (114)

Here
Θ+(x− y) = diag (−θ(y − x), θ(x− y))

Θ−(x− y) = diag (θ(x− y),−θ(y − x)).
(115)

Theorem 3. Let Q(x) ∈ Mθ and let −ρ < λj < ρ be the simple zeroes of the
a(λ). Then

1. R±(x, y, λ) is an analytic function of λ for λ ∈ S± having pole singulari-
ties at λj

2. R±(x, y, λ) is a kernel of a bounded integral operator for λ ∈ S±

3. R(x, y, λ) is uniformly bounded function for λ ∈ Rρ and provides a kernel
of an unbounded integral operator

4. R±(x, y, λ) satisfy the equation

L(λ)R±(x, y, λ) = 11δ(x− y) (116)

5. If Q(x) is such that for λ → ερ the FAS have generic behavior then the
kernel of resolvent is regular for λ→ ερ

6. IfQ(x) is such that for λ→ ερ a(λ) and b(λ) remain finite thenR±(x, y, λ)
behaves like 1/j(λ) for λ→ ερ.

Proof: 1. is obvious from the fact that χ±(x, λ) are the FAS of L(λ)
2. Assume that λ ∈ S+ and consider the asymptotic behavior of R+(x, y, λ)

for x, y → ∞. Equation (115) can be rewritten as

R+(x, y, λ) = 1
iX

+(x, λ)e−ij(λ)σ3xΘ+(x− y)eij(λ)σ3yX̂+(y, λ) (117)

where X+(x, λ) = χ+(x, λ)eij(λ)σ3x. Note that due to equations (25)–(27)
the functions X+(x, λ) are bounded for λ ∈ S+ where Im j(λ) > 0. But
for Im j(λ) > 0 both exponential factors in (117) fall off exponentially for
x, y → ∞. All other possibilities are treated analogously.
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3. For λ ∈ Rρ the arguments of 2) can not be applied because the exponents
in the right hand side of (117) Im j(λ) = 0 only oscillate. Thus we con-
clude that R±(x, y, λ) for λ ∈ Rρ is only a bounded function and thus the
corresponding operator R(λ) is an unbounded integral operator.

4. The proof of equation (116) follows from the fact that L(λ)χ+(x, λ) = 0
and

∂xΘ
±(x− y) = ∓11δ(x− y). (118)

5. From equations (35), (47) and (48) there follows that

lim
λ→ερ

R+(x, y, λ) =
1

2iaερ,0
χ+
ερ,0(x)Θ

+(x− y)χ̃+
ερ,0(y) (119)

where χ̃+
ερ,0(y) is a non-degenerate constant matrix. The respective limit

limλ→ερR
−(x, y, λ) is treated analogously.

6. In the case of virtual eigenvalue we use equations (35), (50) and (51). Now
the result is

lim
λ→ερ

R+(x, y, λ) '
1

2ij(λ)
ψ+
ερ,0(x)φ̃

+
ερ,0(y) +O(1)

lim
λ→ερ

R−(x, y, λ) '
1

2ij(λ)
φ+ερ,0(x)ψ̃

+
ερ,0(y) +O(1).

(120)

�

It is well known that applying the contour integration method on the kernel of the
resolvent one can prove the completeness relation for the Jost solutions [13, 22].
From the above theorem it is obvious that, if the potential Q(x) satisfies the virtual
eigenvalue condition, then there will be additional terms in this relations.

7. Conclusion

Here we have outlined the construction of the Jost solutions and the FAS for the
Zakharov-Shabat system L with constant boundary conditions. We also calculated
their singularities at the end points ±ρ of the continuous spectrum of L. We also
demonstrated the derivation of the reflectionless potentials of L and the dark soli-
ton solutions for the relevant NLS equation (2) using first the GLM approach and
second – the dressing Zakharov-Shabat method. Finally we constructed the kernel
of the resolvent of L and proved that in the regular case R±(x, y, λ) are regular for
λ→ ερ, while in the virtual soliton case R±(x, y, λ) develop pole singularities for
λ→ ερ. The explicit form of the resolvent can be used to derive the completeness
relation for the Jost solutions. Our result shows that in the virtual soliton case this
relation will contain additional term corresponding to a discrete eigenvalue at ερ.



322 Tihomir Valchev, Rossen Ivanov and Vladimir Gerdjikov

The results can be used also to derive the generalized Fourier transform, i.e., the
expansions over the ‘squared solutions’ of L. This will be published elsewhere.
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Abstract. The surfaces providing local extrema to the so-called Willmore
functional, which assigns to each surface its total squared mean curvature,
are frequently referred to as the Willmore surfaces. The corresponding Euler-
Lagrange equation is usually called Willmore equation. The present work is
concerned with a special class of axially symmetric solutions to the Willmore
equation, which are solutions of a simpler ordinary differential equation. An
analytic representation of the corresponding Willmore surfaces is given in
terms of Jacobi elliptic functions and elliptic integrals.

1. Introduction

In 1965, T. Willmore proposed (see references [8,9]) to study the surfaces (widely
known nowadays as the Willmore surfaces) that provide extremum to the functional

W =

∫

S

H2dA (1)

(often called the Willmore functional), which assigns to each surface S its total
squared mean curvature H. Here dA denotes the area element of the surface. The
corresponding Euler-Lagrange equation (frequently referred to as the Willmore
equation in the current literature) read

∆H + 2(H2 −K)H = 0 (2)

325
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where ∆ is the Laplace-Beltrami operator on the surface S and K is its Gaussian
curvature.
Actually, according to Nitsche [3, 4] the history of this variational problem can be
traced about two centuries back to the memoir by Siméon Denis Poisson published
in 1812 and that by Marie-Sophie Germain appeared in 1821 where the functional
(1) was proposed as the bending energy of elastic shells. Approximately a century
later, in 1923, an equivalent variational problem was studied by Thomsen [5] in the
context of conformal geometry. Finally, let us remark that the Willmore functional
(1) and the Willmore equation (2) are invariant under the conformal transforma-
tions of the three-dimensional Euclidean space, see references [2, 6].

2. Rotationally–Invariant Solutions of the Willmore Equation

Let a surface S immersed in the three-dimensional Euclidean space R3 be given as
the graph of a function w : Ω ⊂ R

2 → R, i.e.,

S = graph(w) = {(x1, x2, w(x1, x2)) ⊂ R
3; (x1, x2) ∈ Ω ⊂ R

2}

which is supposed to be continuous and to possess as many derivatives as may be
required on the domain Ω. Let us take x1, x2 to serve as Gaussian coordinates on
the surface S . Then, relative to this coordinate system, the components of the first
fundamental tensor gαβ , second fundamental tensor bαβ , and alternating tensor εαβ

of S are given by the expressions

gαβ = δαβ + wαwβ , bαβ = g−1/2wαβ , εαβ = g−1/2eαβ (3)

where
g = det(gαβ) = 1 + (w1)

2 + (w2)
2 (4)

δαβ is the Kronecker delta symbol (δ11 = δ22 = 1, δ12 = δ21 = 0 ) and eαβ is the
alternating symbol (e11 = e22 = 0, e12 = −e21 = 1 ). Moreover, the contravariant
components gαβ of the first fundamental tensor read

gαβ = g−1δαβ + εαµεβνwµwν = g−1
(

δαβ + eαµeβνwµwν

)

. (5)

Here and in what follows: Greek indices have the range 1, 2, and the usual summa-
tion convention over a repeated index is employed, wα1...αk

(k = 1, 2, ...) denote
the k-th order partial derivatives of the function w with respect to the variables x1

and x2, i.e.,

wα1α2...αk
=

∂kw

∂xα1 . . . ∂xαk

, k = 1, 2, . . .

The mean curvature H of the surface S and its Gaussian curvature K are given as
follows

H =
1

2
gαβbαβ =

1

2
g−3/2

(

δαβwαβ + eαµeβνwαβwµwν

)

(6)
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and

K =
1

2
εαµεβνbαβbµν =

1

2
g−2eαµeβνwαβwµν . (7)

The rotationally–invariant solutions of the Willmore equation are sought in the
form

w = w(r), r =
√

(x1)2 + (x2)2.

On account of equations (3) – (7), upon such a symmetry reduction equation (2)
reads

R ≡ (2 r3 + 4 r3w2
r + 2 r3w4

r)wrrrr (8)

+(4 r2 + 8 r2w2
r + 4 r2w4

r − 20 r3wrwrr − 20 r3w3
rwrr)wrrr

−5r2 (3wr + 3w3
r + r wrr − 6 r w2

rwrr)w
2
rr

+(r w6
r − 2 r − 3 r w2

r)wrr + 2wr + 7w3
r + 9w5

r + 5w7
r + w9

r = 0

where

wr =
dw

dr
, wrr =

d2w

dr2
, wrrr =

d3w

dr3
, wrrrr =

d4w

dr4
·

Simultaneously, the mean and Gaussian curvatures take the forms

H =
1

2r

rwrr + w3
r + wr

(1 + w2
r)

3/2
, K =

1

r

wrrwr

(1 + w2
r)

2 · (9)

3. A Special Class of Axially Symmetric Willmore Surfaces

Consider the following normal system of two ordinary differential equations

dw

dr
= v,

dv

dr
= ±

1

r

(

v2 + 1
)

√

v2 + 2 a
√

v2 + 1 (10)

(where a is a real constant), which is equivalent to the single second-order equation

d2w

dr2
= ±

1

r

[

(

dw

dr

)2

+ 1

]

√

√

√

√

(

dw

dr

)2

+ 2 a

√

(

dw

dr

)2

+ 1 . (11)

Substituting equation (11) into expression R one obtains R = 0 and thus shows
that each solution of system (10) or equation (11) is a solution of the reduced
Willmore equation R = 0. In this way one determines a special class of axially
symmetric Willmore surfaces. It is worth nothing that system (10) and equation
(11) turn out to be invariant under the translations of the variable w and the scaling
transformations

w → wη, r → rη, η ∈ R.
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Substituting equations (10) into expressions (9) one can see that the mean and
Gaussian curvatures of a surface belonging to the forgoing special class are given
as follows

H =
v ±

√

v2 + 2 a
√
v2 + 1

2r
√
v2 + 1

, K = ±
v
√

v2 + 2 a
√
v2 + 1

r2 (v2 + 1)
(12)

where v is any solution of the second equation of system (10).
The substitutions

u =
√

v2 + 1, ρ = ln r (13)
transform the system (10) to the following one

dw

dρ
= eρ

√

u2 − 1 (14)

(

du

dρ

)2

= u2
(

u2 − 1
) (

u2 + 2au− 1
)

. (15)

In terms of a new variable t such that
dρ

dt
=

1

u
(16)

equation (15) may be written in the form
(

du

dt

)2

= P (u) , P (u) =
(

u2 − 1
) (

u2 + 2au− 1
)

(17)

and equation (14) becomes
dw

dt
= eρ

1

u

√

u2 − 1. (18)

Using the standard approach (see [7, §20.6] and [1, pp. 649–652]), one can express
a class of solutions of the equation (17) corresponding to the root u = 1 of the
polynomial P (u) as follows

u (t) =
2
√
a2 + 1−

(√
a2 + 1− a+ 1

)

sn2 (λt, k)

2
√
a2 + 1−

(√
a2 + 1 + a+ 1

)

sn2 (λt, k)
(19)

where

λ =
4
√

a2 + 1, k =
1
√
2

√

1 +
1

√
a2 + 1

and sn(·, ·) denotes the sine Jacobi elliptic function. Then, using expression (19),
one can write down the solution ρ (t) of equation (16) in the form

ρ (t) =
(

λ2 + a
)

t−
λ2 + a− 1

λ
Π

(

λ2 − a+ 1

2λ2
, am (λt, k) , k

)

(20)
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where Π(·, ·, ·) denotes the incomplete elliptic integral of the third kind.
Finally, using the second one of equations (13) and equation (14) we arrive at the
following analytic representation of the parametric equations for the profile curves
of the axially symmetric Willmore surfaces determined by equation (11)

r(t) = eρ(t), w (t) =

∫

eρ(t)
1

u (t)

√

u (t)2 − 1 dt+ b (21)

where b is an arbitrary real constant.
Unfortunately, the parametric equations (21) are too complicated to be used for
displaying the respective surfaces directly. This, however, can be done by solving
numerically system (10) taking as initial values at r = 1 an arbitrary real number
for w (because of the invariance of system (10) under the translation of this vari-
able) and v = 0. Indeed, for each surface of the considered class equations (19)
and (20) imply u(0) = 1 and ρ(0) = 0 and hence, in view of equations (13), v = 0
at r = 1. Two Willmore surfaces obtained in this way are depicted in Figure 1.

Figure 1. Willmore surface constructed by the profile curves Γ− ∪Γ+

(left) and Γ̂− ∪ Γ̂+ (right).

First of them (Figure 1, left) is constructed by joining two profile curves Γ− and
Γ+ (see Figure 2, left), which are generated by solving numerically system (10),
choosing respectively sign “-” and sign “+” of the right-hand side of the second
equation in this system, setting a = 0.2 and taking v = 0 as initial condition at
r = 1. The second one is constructed by joining another couple of profile curves
Γ̂− and Γ̂+ (see Figure 2, right) obtained in the same manner, but now a = 1. The
Gaussian curvatures corresponding to both profile curves Γ− and Γ+ are identical,
while the respective mean curvatures are symmetric with respect to the r-axis. The
same holds true for the Gaussian and mean curvatures of the curves Γ̂− and Γ̂+.

4. Concluding Remarks

In this work, we have determined analytically only one class of axially symmetric
Willmore surfaces – those that arises from the solutions of equation (17) corre-
sponding to the root u = 1 of the polynomial P (u). There are however other
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Figure 2. The curves Γ− (left, thick), Γ+ (left, thin), Γ̂− (right, thick)
and Γ̂+ (right, thin).

possibilities, which will be analysed elsewhere. It is worth noting as well that
spheres and catenoids belong to the class of axially symmetric Willmore surfaces
determined by equation (11). Indeed, it is easy to verify that the functions w =

±
√
R2 − r2 and w = R ln

(

r ±
√
r2 −R2

)

, where R is an arbitrary real con-
stant, determining the corresponding profile curves satisfy equation (11) in the
case a = 0.
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Abstract. In certain scaling limits the higher-dimensional Euclideanized Kerr-
NUT-(A)dS metrics are related to the Einstein-Sasaki ones. The complete set
of Killing forms of the Einstein-Sasaki spaces are presented. It is pointed
out the existence of two additional Killing forms on these spaces associated
with the complex volume form of the Calabi-Yau cone manifold. As a con-
crete example we present the complete set of Killing-Yano tensors on the
five-dimensional Einstein-Sasaki Y (p, q) spaces.

1. Introduction

In the last time the properties of higher-dimensional black holes have become of
large interest. The most general known higher-dimensional metrics describing ro-
tating black holes with NUT parameters in an asymptotically AdS spacetimes were
described in [6]. The general Kerr-NUT-AdS metrics have (2n− 1) non-trivial pa-
rameters where the spacetime dimension is (2n + 1) in the odd-dimensional case
and (2n) in the even dimensional case.
In certain scaling limits [12, 13] these metrics are related to the Einstein-Sasaki
ones. On the other hand the Einstein-Sasaki geometries have been the object of
much attention in connection with the supersymmetric backgrounds relevant to the
AdS/CFT correspondence.
The Kerr-NUT-(A)dS metrics possess isometries and hidden symmetries encoded
in a series of Killing vectors and Stäckel-Killing tensors [6]. These symmetries are
connected with a set of conserved quantities which are functionally independent,

∗Reprinted from J. Geom. Symmetry Phys. 30 (2013) 93–104.
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in involution, and guarantee the complete integrability of the geodesic motions
[11, 15, 18].
In the case of Sasaki spaces the hidden symmetries are derived from the character-
istic Sasakian one-form and a tower of Killing-Yano and conformal Killing-Yano
tensors can be constructed [12].
The main purposes of this paper is to point out the special case of the higher di-
mensional Kerr-NUT-(A)dS metrics which are related to the Einstein-Sasaki ones.
In this instance there are two additional Killing-Yano tensors taking into account
that the metric cone is Calabi-Yau [5,17]. These two exceptional Killing forms can
be also described using the Killing spinors of an Einstein-Sasaki manifold [2].
In Section 2 we review some basic facts about the Stäckel-Killing and Killing-Yano
tensors. In Section 3 we present the close connection between Einstein-Sasaki and
Einstein-Kähler geometries. In the next Section we discuss the Killing forms on
Einstein-Sasaki spaces which proceed from Euclideanized Kerr-NUT-(A)dS met-
rics in certain scaling limits. We identity two new Killing forms associated with
the complex volume form of the cone manifold. In Section 5 we restrict to the
five-dimensional Y (p, q) manifolds and present the complete set of Killing forms.
Finally we give our conclusions in Section 6.

2. Killing Tensors

Let (M, g) be a n-dimensional differentiable manifold equipped with a (pseudo)-
Riemannian metric

ds2 = gij dx
i dxj . (1)

Definition 1. A vector field X on M is said to be a Killing vector if the Lie deriv-
ative with respect to X of the metric g vanishes

LXg = 0. (2)

In coordinates this means that
X(i;j) = 0 (3)

where a semicolon precedes an index i of covariant differentiation associated with
the Levi-Civita connection and a round bracket denotes symmetrization over the
indices within.
A symmetric generalization of the Killing vectors is that of Stäckel-Killing tensors.

Definition 2. A symmetric tensor K(i1···ir;j) of rank r > 1 satisfying the general-
ized Killing equation

K(i1···ir;j) = 0 (4)

is called a Stäckel-Killing tensor.
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From the generalized Killing equation (4) we get that for any geodesic γ with
tangent vector γ̇i

QK = Ki1···ir γ̇
i1 · · · γ̇ir (5)

is constant along γ.
Antisymmetric Killing-Yano tensors [21] are a different generalization of the Kill-
ing vectors.

Definition 3. A Killing-Yano tensor is a p-form f(p ≤ n) which satisfies

∇Xf =
1

p+ 1
Xy dω (6)

for any vector field X , where ‘hook’ operator y is dual to the wedge product.

This definition is equivalent with the property that ωi1···ip;j is totally antisymmetric
or, in components

ωi1···ip−1(ip;j) = 0. (7)

It was observed that Killing-Yano tensors generate non-standard supersymmetries
in the dynamics of pseudo-classical spinning particles being the natural objects to
be coupled with the fermionic degrees of freedom. At the quantum level, Killing-
Yano tensors generate conserved non-standard Dirac operators which commute
with the standard one.
These two generalizations of the Killing vectors could be related. Given two
Killing-Yano tensors ωi1,...,ik and σi1,...,ik it is possible to associate with them a
Stäckel-Killing tensor of rank two

K
(ω,σ)
ij = ωii2...ikσ

i2...ik
j + σii2...ikω

i2...ik
j . (8)

Therefore a method to generate higher order integrals of motion is to identify the
complete set of Killing-Yano tensors. The existence of enough integrals of motion
leads to complete integrability or even superintegrability of the mechanical system
when the number of functionally independent constants of motion is larger than its
number of degrees of freedom.
The conformal extension of the Killing vectors is given by the conformal Stäckel-
Killing and conformal Killing-Yano tensors.

Definition 4. A conformal Killing-Yano tensor of rank p is a p-form ω which sat-
isfies

∇Xω =
1

p+ 1
Xy dω −

1

n− p+ 1
X∗ ∧ d∗ω (9)

for any vector field X on M , where X∗ is the one-form dual to the vector field X
with respect to the metric g, and d∗ is the adjoint of the exterior differential d.
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If ω is co-closed in (9), then we obtain the definition of a Killing-Yano tensor [21].
We mention that Killing-Yano tensors are also called Yano tensors or Killing forms,
and conformal Killing-Yano tensors are sometimes referred as conformal Yano
tensors, conformal Killing forms or twistor forms.

Definition 5. A Killing form ω is said to be a special Killing form if it satisfies for
some constant c the additional equation

∇X(dω) = cX∗ ∧ ω (10)

for any vector field X on M .

3. Kähler and Sasakian Manifolds

The Sasakian geometry, defined on an odd dimensional manifold, is the closest
possible analogue of the Kähler geometry of even dimension.
There are several equivalent definitions of the Sasakian structure and for describing
the problems of interest here it is more convenient to use the following definition:

Definition 6. A compact Riemannian manifold (S, g) is Sasakian if and only if the
metric cone

C(S) = R>0 × S, ḡ = dr2 + r2g (11)

is Kähler.

A Sasakian manifold inherits a number of geometrical structures from the Kähler
structure of its cone. Let us note that if the odd dimension of the Sasaki space is
(2n+1), the Kähler cone has the complex dimension (n+1). In local holomorphic
coordinates (z1, ..., zn+1) the associated Kähler form Ω can be written as

Ω = igjk̄ dz
j ∧ dz̄k =

∑

X∗

j ∧ Y
∗

j =
i

2

∑

Z∗

j ∧ Z̄
∗

j (12)

where (X1, Y1, ..., Xn+1, Yn+1) is an adapted local orthonormal field (i.e., such
that Yj = JXj), and (Zj , Z̄j) is the associated complex frame given by

Zj =
1

2
(Xj − iYj), Z̄j =

1

2
(Xj + iYj). (13)

There is an intimate connection between its Kähler form and the volume form
(which is just the Riemannian volume form determined by the metric) as follows

dV =
1

(n+ 1)!
Ωn+1 (14)

where dV denotes the volume form of C(S), Ωn+1 is the wedge product of Ω with
itself n + 1 times [1]. Hence the volume form is a real (n + 1, n + 1)-form on
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C(S). On the other hand, if the volume of a Kähler manifold is written as

dV =
in+1

2n+1
(−1)n(n+1)/2 dV ∧ dV (15)

then dV is the complex volume holomorphic (n+ 1, 0) form of C(S).
An Einstein-Sasaki manifold is a Riemannian manifold (S, g) that is both Sasaki
and Einstein, i.e., a Sasakian manifold satisfying the Einstein condition

Ricg = λg (16)

for some real constant λ, where Ricg denotes the Ricci tensor of g. Einstein man-
ifolds with λ = 0 are called Ricci-flat manifolds. Similarly, an Einstein-Kähler
manifold is a Riemannian manifold that is both Kähler and Einstein. An impor-
tant subclass of Einstein-Kähler manifolds are the Calabi-Yau manifolds which are
Kähler and Ricci-flat.
A simple calculation shows that we have

Corollary 7. A Sasakian metric g is Einstein with

Ricg = 2ng (17)

if and only if the cone metric ḡ is Ricci flat, i.e., Calabi-Yau.

Suppose we have an Einstein-Sasaki metric gES on a manifold S2n+1 of odd di-
mension 2n+ 1. An Einstein-Sasaki manifold can always be written as a fibration
over an Einstein-Kähler manifold M2n with the metric gEK twisted by the overall
U(1) part of the connection [10]

ds2ES = (dψn + 2A)2 + ds2EK (18)

where dA is given as the Kähler form of the Einstein-Kähler base. This can be
easily seen when we write the metric of the cone manifold M2n+2 = C(S2n+1) as

ds2cone = dr2 + r2 ds2ES = dr2 + r2
(

(dψn + 2A)2 + ds2EK
)

. (19)

The cone manifold is Calabi-Yau and its Kähler form can be written as

Ωcone = r dr ∧ (dψn + 2A) + r2ΩEK (20)

and the Kähler condition dΩcone = 0 implies

dA = ΩEK (21)

where ΩEK is Kähler form of the Einstein-Kähler base manifold M2n.
The Sasakian one-form of the Einstein-Sasaki metric is

η = 2A+ dψn (22)

which is a special unit-norm Killing one-form obeying for all vector fields X [17]

∇Xη =
1

2
Xy dη, ∇X(dη) = −2X∗ ∧ η. (23)
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4. Killing Forms on Kerr-NUT-(A)dS Space in a Certain Scaling Limit

In recent time new Einstein-Sasaki spaces have been constructed by taking certain
BPS [7] or scaling limits [12, 13] of the Euclideanized Kerr-de Sitter metrics.
In even dimensions, performing the scaling limit on the Euclideanized Kerr-NUT-
(A)dS spaces, the Einstein-Kähler metric gEK and the Kähler potential A are [12]

gEK =
∆µ dx

2
µ

Xµ

+
Xµ

∆µ





n−1
∑

j=0

σ(j)µ dψj





2

(24)

with

Xµ = −4
n+1
∏

i=1

(αi − xµ)− 2bµ, A =
n−1
∑

k=0

σ(k+1)dψk (25)

and

∆µ =
∏

ν 6=µ

(xν − xµ), σ(k)µ =
∑

ν1<···<νk
νi 6=µ

xν1 . . . xνk , σ(k) =
∑

ν1<···<νk

xν1 . . . xνk . (26)

Here, coordinates xµ (µ = 1, . . . , n) stands for the Wick rotated radial coordi-
nate and longitudinal angles and the Killing coordinates ψk (k = 0, . . . , n − 1)

denote time and azimuthal angles with Killing vectors ξ(k) = ∂ψk
. Also αi, i =

1, . . . , n + 1 and bµ are constants related to the cosmological constant, angular
momenta, mass and NUT parameters [6].
We mention that in the case of odd-dimensional Kerr-NUT-(A)dS spaces the ap-
propriate scaling limit leads to the same Einstein-Sasaki metric (18).
The hidden symmetries of the Sasaki manifold M2n+1 are described by the special
Killing (2k + 1)−forms [17]

Ψk = η ∧ (dη)k, k = 0, 1, . . . , n− 1. (27)

In [17] Semmelmann has proved that special Killing forms on a Riemannian man-
ifold M are exactly those forms which translate into parallel forms on the metric
cone C(M). Therefore, the metric cone being either flat or irreducible, the prob-
lem of finding all special Killing forms is reduced to a holonomy problem [4]. In
the case of holonomy U(n+1), i.e., the cone M2n+2 = C(M2n+1) is Kähler, or
equivalently M2n+1 is Sasaki, it follows that all special Killing forms are spanned
by the forms Ψk (27). Besides these Killing forms, there are n closed conformal
Killing forms (also called ∗-Killing forms)

Φk = (dη)k, k = 1, . . . , n. (28)
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In the case of holonomy SU(n+1), i.e., the cone M2n+2 = C(M2n+1) is Kähler
and Ricci-flat, or equivalently M2n+1 is Einstein-Sasaki, there are two additional
Killing forms of degree n on the manifold M2n+1.
In order to write explicitly these additional Killing forms, we introduce the com-
plex vierbeins on the Einstein-Kähler manifold M2n. First of all we shall write the
metric gEK in the form

gEK = oµ̂oµ̂ + õµ̂õµ̂ (29)

and the Kähler two-form
Ω = dA = oµ̂ ∧ õµ̂ (30)

where

oµ̂ =

√

∆µ

Xµ(xµ)
dxµ, õµ̂ =

√

Xµ(xµ)

∆µ

n−1
∑

j=0

σ(j)µ dψj . (31)

We introduce the following complex vierbeins on Einstein-Kähler manifold M2n

[20]
ζµ = oµ̂ + iõµ̂, µ = 1, . . . , n. (32)

On the Calabi-Yau cone manifold M2n+2 we take Λµ = rζµ for µ = 1, . . . , n and

Λn+1 = dr + irη. (33)

The standard complex volume form of the Calabi-Yau cone manifold M2n+2 is
[20]

dV = Λ1 ∧ Λ2 ∧ . . . ∧ Λn+1. (34)

The real Killing forms are given the real respectively the imaginary part of the
complex volume form.
The additional Killing forms on the Einstein-Sasaki spaces are connected with the
parallel forms on the metric cone. For this purpose we make use of the fact that for
any p-form ωM on the space M2n+1 we can define an associated (p+ 1)-form ωC

on the cone C(M2n+1)

ωC := rp dr ∧ ωM +
rp+1

p+ 1
dωM . (35)

Moreover ωC is parallel if and only if ωM is a special Killing form (10) with
constant c = −(p + 1) [17]. The one-to-one-correspondence between special
Killing p-forms onM2n+1 and parallel (p+1)-forms on the metric coneC(M2n+1)
allows us to describe the additional Killing forms on Einstein-Sasaki spaces.
Therefore in order to find the additional Killing forms on the manifold M2n+1 we
must identify the ωM form in the complex volume form of the Calabi-Yau cone.
An explicit example is presented in the next Section.
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5. Y (p, q) Manifolds

Recently an infinite family Y (p, q) of Einstein-Sasaki metrics on S2×S3 have been
discovered[7–9, 13]. Such manifolds provide supersymmetric backgrounds rele-
vant to the AdS/CFT correspondence. The total space Y (p, q) of an S1-fibration
over S2×S2 with relative prime winding numbers p and q is topologically S2×S3.
The starting point is the explicit local metric of the five-dimensional Y (p, q) man-
ifold given by the line element [8, 9, 16]

ds2ES =
1− y

6
(dθ2 + sin2 θ dφ2) +

1

p(y)
dy2 +

1

36
p(y)(dβ + cos θ dφ)2

(36)

+
1

9
[dψ′ − cos θ dφ+ y(dβ + cos θ dφ)]2

with

p(y) =
2(a− 3y2 + 2y3)

1− y
(37)

and a is a constant.
From (22) in the case of the Y (p, q) space the Sasakian one-form is

η =
1

3
dψ′ + 2A (38)

with

A =
1

6
(− cos θ dφ+ y(dβ + cos θ dφ)) (39)

connected with local Kähler form ΩEK as in (21).
The form of the metric (36) with the one-form (38) is the standard one for a lo-
cally Einstein-Sasaki metric with ∂

∂ψ′ the Reeb vector field. Note also that the
holomorphic (2, 0)-form of the Einstein-Kähler base manifold is

dVEK =

√

1− y

6p(y)
(dθ + i sin θ dφ) ∧

(

dy + i
p(y)

6
(dβ + cos θ dφ)

)

. (40)

From the isometries SU(2) × U(1) × U(1) the momenta Pφ, Pψ, Pα and the Hamil-
tonian describing the geodesic motions are conserved [3, 16]. Pφ is the third com-
ponent of the SU(2) angular momentum, while Pψ and Pα are associated with the
U(1) factors. Additionally, the total SU(2) angular momentum given by

J2 = P 2
θ +

1

sin2 θ
(Pφ + cos θPψ)

2 + P 2
Ψ (41)

is also conserved.
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In what follows we are looking for further conserved quantities specific for motions
in Einstein-Sasaki spaces. First of all, according to (27), the Killing one-form η

(38) together with the third rank form

Ψ = η ∧ dη

=
1

9

(

(1− y) sin θ dθ ∧ dφ ∧ dψ′ + dy ∧ dβ ∧ dψ′ + cos θ dy ∧ dφ ∧ dψ′

− cos θ dy ∧ dβ ∧ dφ+ (1− y)y sin θ dβ ∧ dθ ∧ dφ) (42)

are special Killing forms (10) with constants c = −2 and c = −4 respectively. Let
us note also that Φk (28) with k = 1, 2 are closed conformal Killing forms.

On the Calabi-Yau manifold C(M2n+1) the Kähler form (20) with the Sasakian
one-form (38) is

Ωcone = r2
1− y

6
sin θ dθ ∧ dφ+

r2

6
dy ∧ (dβ + cos θ dφ)

(43)
+
1

3
r dr ∧

(

y dβ + dψ′ − (1− y) cos θ dφ
)

.

The complex volume holomorphic (3, 0) form on the metric cone is [14]

dVcone = eiψ
′

r2 dVEK ∧ (dr + irη)

= eiψ
′

r2

√

1− y

6p(y)
(dθ + i sin θ dφ)

∧

(

dy + i
p(y)

6
(dβ + cos θ dφ)

)

∧
(

dr + i
r

3
(y dβ + dψ′ − (1− y) cos θ dφ)

)

.

(44)

Extracting from the complex volume (44) the form ωM on the Einstein-Sasaki
space according to (35) for p = 2 we get the following additional Killing 2-forms
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of the Y (p, q) spaces written as real forms [19]

Ξ = <ωM =

√

1− y

6 p(y)

×

(

cosψ′

(

−dy ∧ dθ +
p(y)

6
sin θ dβ ∧ dφ

)

− sinψ′

(

− sin θ dy ∧ dφ−
p(y)

6
dβ ∧ dθ +

p(y)

6
cos θ dθ ∧ dφ

)

)

Υ = =ωM =

√

1− y

6 p(y)

×

(

cosψ′

(

− sin θ dy ∧ dφ−
p(y)

6
dβ ∧ dθ +

p(y)

6
cos θ dθ ∧ dφ

)

+sinψ′

(

−dy ∧ dθ +
p(y)

6
sin θ dβ ∧ dφ

)

)

.

(45)

The Stäckel-Killing tensors associated with the Killing forms Ψ ,Ξ ,Υ are con-
structed as in (8). The list of the non vanishing components of these Stäckel-Killing
tensors is quite long and will be given elsewhere. Together with the Killing vectors
Pφ, Pψ, Pα and the total angular momentum J2 (41) these Stäckel-Killing tensors
provide the superintegrability of the Y (p, q) geometries.

6. Concluding Remarks

In general it is a hard task to find solutions of the Killing-Yano equation (6) or
conformal Killing-Yano equation (9). However in the case of spaces endowed with
special geometrical structures, the existence of Killing forms and their explicit
construction is granted.
In this paper we presented the complete set of Killing forms on Einstein-Sasaki
spaces associated with Euclideanized Kerr-NUT-(A)dS spaces in a certain scaling
limit. The multitude of Killing-Yano and Stäckel-Killing tensors makes possible a
complete integrability of geodesic equations.
As an exemplification of the general framework we have presented the complete
set of Killing forms on five-dimensional Einstein-Sasaki Y (p, q) spaces. The mul-
titude of Stäckel-Killing tensors associated with these Killing forms implies the
superintegrability of the geodesic motions.
These remarkable properties of the Killing forms offer new perspectives in the in-
vestigation of the supersymmetries, separability of Hamilton-Jacobi, Klein-Gordon
and Dirac equations on Einstein-Sasaki spaces.
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Abstract. We consider the Caudrey-Beals-Coifman linear problem and the
theory of the Recursion Operators (Generating Operators) related to it in the
presence of Zp reduction of Mikhailov type.

1. Introduction

1.1. The Generalized Zakharov-Shabat and Caudrey-Beals-Coifman
Systems

As it is well known nonlinear evolution equations (NLEEs) of soliton type are
equations (systems) that can be written into the form [L,A] = 0 (Lax represensta-
tion) where L,A are linear operators on ∂x, ∂t depending also on some functions
qα(x, t), 1 ≤ α ≤ s (called ‘potentials’) and the spectral parameter λ. The corre-
sponding system is of a course system of partial differential equations on qα(x, t).
Usually the equation is a part of a hierarchy of NLEEs related to Lψ = 0 (auxiliary
linear problem) which consists of the equations that can be obtained by changing
A and fixing L, [7, 15]. The soliton equations possess many interesting proper-
ties but for our purposes we shall mention only that they can be solved explicitly
through various schemes, most of which share the property that the Lax represen-
tation permits to pass from the original evolution to the evolution of some spectral
data related to the problem Lψ = 0. The Caudrey-Beals-Coifman (CBC) sys-
tem, called the Generalized Zakharov-Shabat (GZS) system in the case when the

∗Reprinted from J. Geom. Symmetry Phys. 30 (2013) 105–120.
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element J is real, is one of the best known auxiliary linear problems

Lψ = (i∂x + q(x)− λJ)ψ = 0. (1)

The system has a long history of study and generalizations see [2–6,29,30], finally
it has been realized that one can assume that q(x) and J belong to a fixed simple
Lie algebra g in some finite dimensional irreducible representation, [17]. Then the
element J should be regular, that is ker(adJ) (adJ(X) ≡ [J,X], X ∈ g) is a
Cartan subalgebra h ⊂ g and q(x) should belong to the orthogonal complement
h
⊥ ≡ ḡ of h with respect to the Killing form: 〈X,Y 〉 = tr(adX adY ), X,Y ∈ g.

Thus q(x) =
∑

α∈∆ qα(x)Eα where Eα are the root vectors, ∆ is the root system
of g with respect to h. (We use notation and normalizations as in [20].) The scalar
functions qα(x) are defined on R, are complex valued, smooth and tend to zero
as x → ±∞. We shall assume that they are Schwartz-type functions. Classical
Zakharov-Shabat system is obtained for g = sl(2,C), J = diag(1,−1).

1.2. The AKNS Approach to the Soliton Equations

Let us construct the so-called adjoint solutions of the system L, that is functions of
the type w = mXm−1 where X = const, X ∈ g and m is fundamental solution
of Lm = 0. They satisfy the equation

[L,w] = (i∂xw + [q(x)− λJ,w]) = 0.

Let wa = π0, wd = (id−π0)w where π0 is the orthogonal projector (with respect
to the Killing form) of w over h⊥ and h respectively. We cannot go in detail into
the AKNS approach, its history and generalizations, we just mention the seminal
work [1] according to which the approach has been named and refer to [15] for all
the details. Very roughly speaking the main facts are the following

• If a suitable set of adjoint solutions (wi(x, λ))i is taken, for λ on the spec-
trum of L the functions wa

i (x, λ) form a complete set in the space of poten-
tials q(x).

• If one expands the potential over (wi(x, λ))i as coefficients one gets the
minimal scattering data for L.

2. Recursion Operators

Relation to the expansions over adjoint solutions. From the above follows that
passing from the potentials to the scattering data can be considered as General-
ized Fourier Transform. For it the functions wa

i (x, λ) play the role the exponents
play in the Fourier transform. The Recursion Operators (Generating Operators,
Λ-operators) are the operators for which the adjoint solutions wa

i (x, λ) introduced
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above are eigenfunctions and therefore for the Generalized Fourier transform they
play the same role as the differentiation operator in the Fourier transform method.
For the above reason recursion operators are theoretical tools containing most of
the information about the NLEEs associated withL. Through them can be obtained

i) The hierarchies of the nonlinear evolution equations solvable through L.
ii) The conservation laws for these NLEEs.

iii) The hierarchies of Hamiltonian structures for these NLEEs.

It is not hard to get that the recursion operators related to L have the form

Λ±(X(x)) = ad−1
J



i∂xX + π0[q,X] + i adq

x
∫

±∞

(id−π0)[q(y), X(y)]dy



 (2)

where of course adq(X) = [q,X] andX is a smooth, fast decreasing function with
values in h

⊥.
Relation to recursion identities. The name recursion operators has the following
origin. If for the NLEEs such that [L,A] = 0 the operator A is of the form

A = i∂t +
n
∑

k=0

λkAk, An ∈ h, An = const, An−1 ∈ h
⊥

then first An−1 = ad−1
J [q,A] and for 0 < k < n − 1 one gets the recursion

relations

π0Ak−1 = Λ±(π0Ak), (id−π0)Ak = i(id−π0)

x
∫

±∞

[q, π0Ak](y)dy. (3)

Moreover, the NLEEs related to L can be written into one of the two forms

iad−1
J qt + Λn

±

(

ad−1
J [An, q]

)

= 0. (4)

Thus the recursion operators could be introduced also algebraically as the operators
solving the above recursion relations.
Geometric Interpretation. The recursion operators have interesting geometric
interpretation as dual objects to a Nijenhuis tensorsN on the manifold of potentials
on which it is defined a special geometric structure, Poisson-Nijenhuis structure
[15, 22]. The corresponding NLEEs are fundamental fields of that structure.
Summarizing, the recursion operators have three important aspects

• They appear naturally by considering the recursion relations arising from
the Lax representations of the NLEEs related with L.

• In the generalized Fourier expansions they play the role similar of the role
of differentiation in the Fourier expansions.
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• Their adjoint operators are Nijenhuis tensors for some special geometric
structure on the manifold of potentials - Poisson-Nijenhuis structures.

In this work we shall discuss the implications of the Mikhailov-type reductions
on the theory of recursion operators. The topic has been considered recently in
several papers, for example [12–14, 25–27]. The case treated in these papers is
of the CBC system in pole gauge. The CBC system in canonical gauge (the one
we discuss now) subject to reductions has been considered earlier. For example,
in [18, 19] were investigated the implications to the scattering data. In [16] the
recursion operators in the presence of reductions has been considered from spectral
theory viewpoint. General result about the geometry of the recursion operators for
L in canonical gauge is presented in [28]. From the other side, though there are
number of papers treating what happens with the spectral expansions related with
the recursion operators in concrete situations with Zp reductions, there has been no
general treatment and we shall try to fill this gap.

3. Fundamental Solutions to the CBC System

If q(x) =
∑

α∈∆ qα(x)Eα we define: ‖q‖1 =
∑

α∈∆

+∞
∫

−∞

|qα(x)|dx. Potentials for

which ‖q‖1 < ∞ form a Banach space L1(ḡ,R). Some important facts about the
solutions of (1) with q ∈ L1(ḡ) in some irreducible matrix representation defined
on a space V are obtained in [17]. We remind them in this and the next section.
Let m(x, λ) = ψ(x, λ) exp iλJx where ψ satisfies CBC system. Then

i∂xm+ q(x)m− λJm+ λmJ = 0, lim
x→−∞

m = 1V . (5)

Theorem 1. Suppose that for a fixed λ the bounded fundamental solutionm(x, λ),
satisfying the equation (5) exists. Suppose that λ does not belong to the bunch of
straight lines Σ = ∪α∈∆lα where

lα = {λ ; Im(λα(J)) = 0}. (6)

Then the solutionm(x, λ) is unique. (In the above Im denotes the imaginary part.)

The connected components of C \Σ are open sectors in the λ-plain. In every such
sector either Im[λα(J)], α ∈ ∆ is identically zero or it has the same sign. We
denote these sectors by Ων and order them anti-clockwise. Clearly ν takes values
from one to some even number 2M . The boundary of the sector Ων consists of two
rays - Lν and Lν+1 (Lν comes before Lν+1 when we turn anti-clockwise) so that
Ω̄ν ∩ Ω̄ν−1 = Lν . Of course, we understand the number ν modulo 2M .
For small potentials (‖q‖1 < 1) in any representation of g there is no discrete
spectrum and in each sector Ων there exists unique fundamental solution mν(x, λ)
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of (5), analytic in λ. The solution admits extension by continuity to the boundary
of Ων , that is to the rays Lν and Lν+1. For potentials that are not small the typical
approach is to consider potentials on compact support and then to pass to Lebesgue
integrable potentials. The situation is complicated, there is discrete spectrum etc.,
[17]. For our purposes however we shall limit ourselves to the situation when there
is no discrete spectrum.

4. Expansions Over Adjoint Solutions

We first define in each Ων analytic solutions χν(x, λ) of equation (1)

mν(x, λ) = χν(x, λ)e
iλJx (7)

and then we set

eνα(x, λ) = π0(χν(x, λ)Eαχ
−1
ν (x, λ)), λ ∈ Ω̄ν . (8)

This notation is better to be changed because for λ ∈ Lν it will be good to retain
the index ν to refer to the ray Lν . Then it becomes necessary to distinguish from
which sector the solution is extended. So for λ ∈ Lν we shall write e(+;ν)

α (x, λ)

if the solution is extended from the sector Ων−1 and e(−;ν)
α (x, λ) if the solution is

extended from the sector Ων . In other words, for λ ∈ Lν

eν;+α (x, λ) = π0(χν−1(x, λ)Eαχ
−1
ν−1(x, λ)) (9)

eν;−α (x, λ) = π0(χν(x, λ)Eαχ
−1
ν (x, λ)).

In order to write the completeness relations, let is denote

Π0 =
∑

γ∈∆

| γ〉〈γ |

γ(J)
, δ±ν = ∆±

ν ∩ δν (10)

δν = {α ∈ ∆ ; Im(λα(J)) = 0 for λ ∈ Lν}. (11)

Let us also assume that the rays Lν are oriented from 0 to ∞. Then the complete-
ness relations (no discrete spectrum) amount to the formula

Π0δ(x− y)

=
1

2π

2M
∑

ν=1

∫

Lν

dλ{
∑

α∈δ
+
ν

[e(−;ν)
α (x)⊗ e

(−;ν)
−α (y)− e

(+;ν)
−α (x)⊗ e(+;ν)

α (y)]} (12)

where we have omitted the dependence on λ in order to be able to write the relation
(12) more nicely. The above formula should be understood in the following way:
first, it is assumed that g∗ is identified with g, assuming that the pairing is given by
the Killing form. So for example, for X,Y, Z ∈ g making a contraction of X ⊗ Y
with Z on the right we obtain X〈Y,Z〉 and making contraction on the left we get
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〈Z,X〉Y . Next, the formula for Π0 implies that making a contraction with Π0 on
the right we get Π0X = ad−1

J π0X and similarly on the left XΠ0 = − ad−1
J π0X .

(On the space ḡ the operator adJ is invertible.) Finally, if we have a L1-integrable
function h : R 7→ ḡ then making a contraction of adJ h = [J, h] with (12) from
the right (left) and integrating over y from −∞ to +∞ we get

h(x) =
ε

2π

2M
∑

ν=1

∫

Lν

{
∑

α∈δ
+
ν

[e(−;ν)
εα (x)〈〈e

(−;ν)
−εα , [J, h]〉〉

− e(+;ν)
εα (x)〈〈e

(+;ν)
−εα , [J, h]〉〉]}dλ. (13)

We have two expansions here for ε = +1 and ε = −1 and we adopted the notation

〈〈e(±;ν)
α , [J, h]〉〉 =

+∞
∫

−∞

〈e(±;ν)
α (x), [J, h(x)]〉〉dx. (14)

We must make some comments here

1. It can be shown that the expansion (13) converges in the same sense as the
Fourier expansions for h(x). These are the so-called Generalized Fourier
Expansions and the functions e±;ν

α (x, λ) are the Generalized Exponents.
When one expands over the Generalized Exponents the potential q(x) one
gets as coefficients the minimal scattering data.

2. One can prove that

(Λ− − λ)e(−;ν)
α = 0, (Λ− − λ)e

(+;ν)
−α = 0, α ∈ δ+ν (15)

(Λ+ − λ)e
(−;ν)
−α = 0, (Λ+ − λ)e(+;ν)

α = 0, α ∈ δ+ν (16)
and therefore the expansions (13) are in fact the spectral decompositions for
the operators Λ− and Λ+, that is they play for these expansions the role that
i∂x plays for the Fourier expansion.

5. Zp Reductions in the CBC System Defined by an Automorphism

We shall consider now special type of linear problems of the type (1) in which the
potential function q(x) and the element J obey some special requirements resulting
from Mikhailov-type reductions, [21, 23, 24]. We shall consider the case when the
Mikhailov reduction group G0 is generated by one element, which we denote by
H . It acts on the fundamental solutions in the following way

H(ψ(x, λ)) = K(ψ(x, ω−1λ)) (17)

where ω = exp
2πi

p
and K is automorphism of order p of the Lie group correspond-

ing to the algebra g. K generates an automorphism of g which we shall denote by
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the same letter K. We shall require in the above situation that the automorphism
leaves invariant the Cartan subalgebra h ⊂ g to which the element J in the CBC
system belongs. We proceed with some general remarks and technical results.

1. Suppose K is an automorphism of g and Kp = id, Kh ⊂ h. (In case of Cox-
eter automorphisms p is the Coxeter number.) The Coxeter automorphisms
are internal that is each K is internal and can be represented as K = Ad(K),
K belonging to the corresponding group G with algebra g.

2. The automorphisms leave the Killing form invariant, a fact that we shall use
constantly.

3. The algebra g splits into a direct sum of eigenspaces of K, that is

g = ⊕
p−1
s=0g

[s] (18)

where for each X ∈ g
[s] we have KX = ωsX and the spaces g[s], g[k] for

k 6= s are orthogonal with respect to the Killing form.
4. Because K leaves h invariant, it leaves invariant also the orthogonal com-

plement ḡ of h. Thus each g
[s] splits into ḡ

[s] ⊕ h
[s] and

ḡ = ⊕
p−1
s=0 ḡ

[s], h = ⊕
p−1
s=0h

[s]. (19)

The spaces ḡ[k] and h
[s] are orthogonal for arbitrary k and s. We shall denote

the projectors over the space ḡ
[k] by π[s]0 .

After the above preliminaries, let us assume that the set of fundamental solutions
for the spectral problem (1) is invariant under G0. Then as it is easy to see that we
must have

K(J) = ωJ, Kq = q (20)

that is, J ∈ g
[1], q(x) ∈ g

[0]. In fact, suppose we have a Lax representation
[L,A] = 0 where A has the form

A = i∂t +
n
∑

k=0

λkAk, An ∈ h, An = const, An−1 ∈ ḡ.

If the common fundamental solutions for Lψ = 0, Aψ = 0 are invariant under G0

then we also have

K(As) = ωsAs, s = 0, 1, 2, . . . n. (21)

The above reductions are compatible with the evolution in the sense that if at the
moment t = 0 we have (20), (21) we have the same relations at arbitrary moment t.
The invariance of the set of the fundamental solutions can be additionally specified
if we take the solutions mν(x, λ) defined in the sectors Ων , ν = 1, 2, . . . 2M
defined by the straight lines lα = {λ ; Im(λα(J)) = 0, α ∈ ∆}. (Of course, one
obtains the same line for α and −α but it can happen that α 6= β and lα = lβ .)
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Taking into account the uniqueness of the solutionsm(x, λ) we get that K(m(x, λ))
is equal to m(x, ωλ). Consequently, we obtain that

K(χ(x, λ)) = K(m(x, λ)e−iJxλ) = m(x, ωλ)e−iJxωλ = χ(x, ωλ) (22)

is analytic in ωΩν . If lα, lβ form the boundary of Ων then ωlα, ωlβ are the straight
lines defining the boundary of ωΩν .
Let us define K̂ : h 7→ h by K̂ = (K∗)−1. The map K̂ defines the coadjoint action
of K on h

∗. Naturally K̂p = id and

〈K̂ξ,KH〉 = 〈ξ,H〉, ξ ∈ h
∗, H ∈ h. (23)

It is a general fact from the theory of the automorphisms is that for all roots we have
KEα = q(α)E

K̂α
, where q(α) = ±1, q(α)q(−α) = 1, q(α)q(β) = q(α + β) if

α + β ∈ ∆. One easily gets that ωlα = l
K̂−1α

. Thus we have an action of the
automorphism K (the group Zp) on the bunch of lines {lα}α∈∆ defined by K̂−1

and similarly the action on the set of sectors Ων , ν = 1, 2, . . . , 2M . We have

Proposition 2. The representatives from the different orbits of Zp on the set of
sectors Ων , ν = 1, 2 . . . , a can be taken to be adjacent, which we shall always
assume.

6. Expansions in Presence of Reductions Defined by Automorphisms

6.1. Zp Reductions of General Type

Consider the general case of automorphism K of order p, let Ω1, Ω2,...,Ωa be the
fundamental sectors (moving anticlockwise when we go from Ω1 to Ωa) and let
us label the rays that form the boundaries of the sectors in such a way that Ων

is locked between the rays Lν and Lν+1 that are oriented from zero to infinity.
Since multiplication by ωp is identity (turning by angle 2π) the number of sectors
is 2M = pa. Multiplying by ω we get from the sector Ων the sector Ωa+ν and
multiplying by ω2M we get again Ων so we shall understand the labels modulo 2M .
Naturally, La+ν = ωLν . For each α ∈ ∆ we have K(Eα) = q(α)E

K̂α
, where

q(α) are numbers, such that q(α) = ±1, q(α)q(−α) = 1 and q(α)q(β) = q(α+β)
if α+ β ∈ ∆. It is not hard to obtain that

[K ◦ π0](χν(x, λ)Eαχ
−1
ν (x, λ)) = π0(χν+a(x, ωλ)K(Eα)χ

−1
ν+a(x, ωλ))

= q(α)π0(χν+a(x, ωλ)EK̂α
χ−1
ν+a(x, ωλ))

and as a consequence

K(eνα(x, λ)) = q(α)eν+a

K̂α
(x, ωλ). (24)
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Changing the variables for the integrals over the rays that do not belong to the set
{L1, L2, . . . La} we transform expansion (12) into

Π0 δ(x− y) =
1

2π

a
∑

ν=1

p
∑

k=1

∫

Lν

{
∑

α∈δ
+
ν

[ωkKk ⊗Kk(e(−;ν)
α (x)⊗ e

(−;ν)
−α (y))

(25)

−
∑

ωkKk ⊗Kk(e
(+;ν)
−α (x)⊗ e(+;ν)

α (y))]}dλ

where (K ⊗ K)(X ⊗ Y ) = K(X) ⊗ K(Y ). Note that the numbers q(α) do not
appear any more, this occurs because we apply K always on products of the type
Eα ⊗ E−α. The rays Lν are orientated from 0 to ∞ and the index ν is understood
modulo a.
The expansions of a function h(x) over the adjoint solutions can be simplified
further, if for arbitrary x the value h(x) ∈ g

[s], where g
[s] is the eigenspace corre-

sponding to the eigenvalue ωs. As the Killing form is invariant with respect to the
action of the automorphism, we get

〈Kk(eνα(x, λ)), [J, h(x)]〉 = 〈eνα(x, λ),K
−k([J, h(x)])〉

= ω−k(s+1)〈eνα(x, λ), [J, h(x)]〉.

The expansions over the adjoint solutions run as follows

h(x) =
ε

2π

a
∑

ν=1

∫

Lν

{
∑

α∈δ
+
ν

[

p
∑

k=1

ω−ksKk(e(−;ν)
εα (x, λ))〈〈e

(−;ν)
−εα , [J, h]〉〉

−

p
∑

k=1

ω−ksKk(e
(+;ν)
−εα (x, λ))〈〈e(+;ν)

εα , [J, h]〉〉]}dλ. (26)

Actually here we have two expansions, one for ε = +1 and the other for ε = −1
and the index ν is understood modulo a.Thus we see that h(x) is expanded over
the functions

e(±;ν;s)
α (x, λ) =

p
∑

k=1

ω−ksKk(e(±;ν)(x, λ)) ∈ g
[s], ν = 1, 2, . . . , a (27)

since for arbitrary X ∈ g we have
∑p

k=1 ω
−ksKk(X) ∈ g

[s]. We shall denote by
e
(ν;s)
α (x, λ) the expressions

e
(ν;s)
α (x, λ) =

p
∑

k=1

ω−ksKk(eνα(x, λ)), λ ∈ Ων . (28)

Clearly, e(±;ν;s)
α (x, λ) are just the limits of e(ν−1;s)

α (x, λ) and e(ν;s)α (x, λ) when λ
approaches one of the rays Lν from one or the other side. If as before h(x) ∈ g

[s],
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we get 〈e
(ν;s+1)
α (x, λ), [J, h(x)]〉 = p〈eνα, [J, h(x)]〉 and the expansions (26) can

be cast into the form

h(x) =
ε

2πp

a
∑

ν=1

∫

Lν

{
∑

α∈δ
+
ν

[e(−;ν;s)
εα (x, λ)〈〈e

(−;ν;s+1)
−εα , [J, h]〉〉

(29)

−e
(+;ν;s)
−εα (x, λ))〈〈e

(+;ν;s+1)
+εα , [J, h]〉〉]}dλ.

(As before we have two expansions, for ε = +1 and for ε = −1.)

6.2. Coxeter Automorphisms Reductions

Coxeter automorphisms are the automorphisms for which

K̂ = Sα1
Sα2

. . . Sαr
, Kp = id, p− the Coexter number

and Sαi
are the Weyl reflections corresponding to the simple roots α1, α2, . . . αr

of g. We are able to prove the following

Theorem 3. Assume we have the CBC problem for the classical series of simple
Lie algebras and the Zp reduction is defined as in the above using the Coxeter
automorphism K. Then we have two adjacent fundamental sectors of analyticity
for the fundamental analytic solutions mν(x, λ) and they can be chosen to be

Ω0 = {λ ;
π

2
< arg(λ) <

π

2
+
π

p
}

Ω1 = {λ ;
π

2
+
π

p
< arg(λ) <

π

2
+

2π

p
}.

(30)

For a reduction defined by Coxeter automorphism of order p on some fixed algebra
from the classical series of simple Lie algebras the expansion we considered spec-
ify even further. First, for the sake of symmetry we label the fundamental sectors
by 0 and 1, that is they are Ω0 and Ω1 (as in the above). Their boundaries are
formed by the rays L0, L1, L2. Next, if α ∈ δ+ν then

• ν = 2k leads to K̂−kα ∈ δ+0 = δ+2p

• ν = 2k + 1 leads to K̂−kα ∈ δ+1 .

The completeness relations we have considered, namely the general formula (25)
and the expansions (26),(29) can be written easily for the case of Coxeter automor-
phism reduction. The only thing one needs to do is not to sum over ν instead from
1 to a but from 0 to 1. Of course, p is then the Coxeter number.
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7. Recursion Operators and Zp Reductions Related to
Automorphisms

7.1. Algebraic Aspects

When we have Zp reductions of the type we consider the algebra splits in a direct
sum, see (18) and q ∈ g

[0] while J ∈ h
[1]. In particular, this means that

adJ(ḡ
[s]) ⊂ ḡ

[s+1], ad−1
J (ḡ[s]) ⊂ ḡ

[s−1] (31)

(the superscripts are understood modulo p.) Also, if X ∈ ḡ
[s] then ∂xX ∈ ḡ

[s],
∂−1
x X ∈ ḡ

[s], [q,X] ∈ ḡ
[s] and

Λ±X = ad−1
J {i∂xX + π0[q,X] + adq ∂

−1
x (1− π0)[q,X]} ∈ ḡ

[s−1]. (32)

If we use the projectors π[s]0 introduced earlier the above expression can also be
written as

Λ±X = ad−1
J {i∂x + π0 adq +adq ∂

−1
x (1− π0) adq}π

[s]
0 X. (33)

Further on we will denote

• by F(ḡ) the space of smooth, rapidly decreasing ḡ-valued functions.
• by F(ḡ[s]) the space of smooth, rapidly decreasing ḡ

[s]-valued functions.

• by Λ±;s the operator Λ±π
[s]
0 , that is Λ±;sX = Λ±X if X ∈ F(ḡ[s]).

The spaces F(ḡ[s]) are mapped by Λ± and are invariant under the action of Λp
±

Λ±|F(ḡ[s]) = Λ±;s|F(ḡ[s]), Λ±;sF(ḡ
[s]) ⊂ F(ḡ[s−1]). (34)

Also
Λp
±|F(ḡ[s] = Λ±;s−p+1 . . .Λ±;s−1Λ±;s (35)

and the indexes are understood modulo p. In particular

Λp
±|F(ḡ[0]) = Λ±;1 . . .Λ±;p−2Λ±;p−1Λ±;p. (36)

Recall that the recursion operators arise naturally when looking for the NLEEs that
have Lax representation [L,A] = 0 with L being the CBC system operator and A
is the form

A = i∂t +
n
∑

k=0

λkAk, h 3 An = const, An−1 ∈ ḡ. (37)

Then from [L,A] = 0 we first obtain An−1 = ad−1
J [q,A] and next for 0 < k <

n− 1 the recursion relations π0Ak−1 = Λ±(π0Ak) and the NLEEs (4).
Assume that we have Zp reduction. Then q ∈ ḡ

[0], J ∈ h
[0] and we must have

K(As) = ωsAs. Assume that An ∈ h
[n]. Then An−1 ∈ ḡ

[n−1] and we see that
As ∈ g

[s]. Therefore the reduction requirements will be satisfied automatically
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when we choose An ∈ h
[n]. Since n is a natural number let us write it into the

form n = kp+m where k, p,m are natural numbers and 0 ≤ m < p. Then

Λn
± ad−1

J [An, q] = Λkp
± Λm

± ad−1
J [An, q]

= (Λ±;0 . . .Λ±;p−2Λ±;p−1)
k Λ±;0 . . .Λ±;m−2Λ±;m−1 ad

−1
J [An, q].

Starting from the works [8,9] it is frequently said that when reductions are present
the recursion operator becomes of higher order in the derivative ∂x and factorizes
into a product of first order operators with respect to ∂x. The above has been used
by some authors to justify the claim that the recursion operatorsR± in the presence
of Zp reduction factorize to become

R± = Λ±;0 . . .Λ±;p−2Λ±;p−1. (38)

To our opinion more accurate would be simply to say that they are restrictions of
the recursion operator in general position on some subspaces

Λ±;0 Λ±;p−1 Λ±;1

F(ḡ[p]) = F(ḡ[0]) → F(ḡ[p−1]) → . . . → F(ḡ[0]) = F(ḡ[p]).
(39)

The above shows that the role of the recursion operators in case of Zp reductions
is taken now by Λp

±. This view is supported also by the geometric picture, [28],
since the operators (Λp

±)
∗ are also Nijenhuis tensors.

7.2. Expansions Over Adjoint Solutions

Let us see how the operators we introduced act on the set of functions (27), (28)
over which the expansions (26) are written. Using the properties of the automor-
phism K (the fact that it commutes with the projection π0 on h) and the facts that
Kq = q and KJ = ωJ we easily get

Lemma 4. If K is an automorphism of order p defining the Zp reduction then

Λ± ◦ K = ωK ◦ Λ±. (40)

As a consequence
Λp
± ◦ K = K ◦ Λp

±. (41)

Then for λ ∈ Ων we immediately obtain

Λ±e
(ν;s)
α (x, λ) = λ

p
∑

k=1

ω−k(s−1)KkΛ±(e
ν
α(x, λ)) = λe

(ν;s−1)
α (x, λ). (42)

After some calculations we get that

Λ−e
(−;ν;s)
α = λe(−;ν,s−1)

α , Λ−e
(+;ν,s)
α = λe(+;ν.s−1)

α , α ∈ δ+ν (43)

Λ+e
(−;ν,s)
−α = λe

(−;ν,s−1)
−α , Λ+e

(+;ν,s)
α = λe(+;ν,s−1)

α , α ∈ δ+ν . (44)
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As a corollary

Λp
−e

(−;ν;s)
α = λpe(−;ν,s)

α , Λp
−e

(+;ν,s)
−α = λpe

(+;ν.s)
−α , α ∈ δ+ν (45)

Λp
+e

(−;ν,s)
−α = λpe

(−;ν,s)
−α , Λp

+e
(+;ν,s)
α = λpe(+;ν,s)

α , α ∈ δ+ν (46)

and we have

Theorem 5. For the expansions (26) the role of the recursion operators are played
by the p-th powers of the operators Λ±.

8. Conclusions

• The above considerations show that both from recursion relations viewpoint
and expansion over adjoint solutions viewpoint the role of the recursion
operators in case of Zp reductions is played by the operators Λp

±.
• The same conclusion is drawn from the geometric considerations [28] so the

theory now is complete in all aspects - algebraic, spectral and geometric.
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