CONNECTIONS AND EXCITED WAVEPACKETS OVER INVARIANT ISOTROPIC TORUS

MICHAEL KARASEV

Dept. Appl. Math., MIEM,

109028 Moscow, Russia

and

YURIY VOROBJEV
Dept. Appl. Math., MIEM, 109028 Moscow, Russia

ABSTRACT

It is shown how to construct a semiclassical wave function by means of transport of certain universal packets (or wavelets) along an individual invariant tori of a Hamilton system using a connection generated by infinitesimal integrals of motion.

1. Introduction

Let a Hamiltonian system corresponding to the function H(q,p) on \mathbb{R}^{2d} have an invariant isotropic torus $\Lambda \approx \mathbb{T}^k$ lying at the level of constant energy $\{H = \lambda\}$. What can we say in this case about the spectrum and eigenfunctions of the quantum operator $\widehat{H} = H(q, -i\hbar\partial/\partial q)$, at least in a semiclassical approximation as $\hbar \to 0$? (We define the operator \widehat{H} by means of the Weyl symmetrization of q and $-i\hbar\partial/\partial q$ and assume that at infinity all the derivatives of the symbol F grow not greater than a certain polynomial).

There is the following à priori hypothesis: one can find a set of numbers $\lambda_{m,n}$ close to λ , an confunctions $\psi_{m,n}(q)$ whose oscillation front is close to Λ , so that the pair $\lambda_{m,n}$, $\psi_{m,n}$ approximates the exact spectral data of the operator \hat{H} with a precision $o(\hbar)$. Here the indices m, n denote the quantum numbers responsible for the excitation of the torus along the "action variables" and the conscillator variables" skew-orthogonal to Λ .

Of course, this hypothesis can be realized only if a number of additional conditions is satisfied. Usually, in this problem, a classical method for matching the local WKB-asymptotics an their Fourier transformations is used (Keller, Maslov, Hermander, Babich and others; for details and references, see $^{1-5}$). Here we want to describe a simple global construction for quasi-modes $\psi_{m,n}$ by means of another technique proposed in $^{6-8}$, which does not use gluing, matching, etc.