A CONSTRUCTION OF A STAR PRODUCT ON A POISSON MANIFOLD ### HIDEKI OMORI Dept. of Math. Fac. of Science and Technology Science Univ. of Tokyo, Noda, Chiba 278, Japan and #### YOSHIAKI MAEDA Dept. of Math. Fac. of Science and Technology, Keio Univ., Hiyoshi, Yokohama 223, Japan and #### AKIRA YOSHIOKA Dept. of Math. Fac. of Science and Technology, Science Univ. of Tokyo, Noda, Chiba 278, Japan ## ABSTRACT An inductive method is given for constructing a star product on a Poisson manifold. The necessary and sufficient conditions are presented for this method to be successful. #### Introduction Let M be a C^{∞} manifold with a Poisson structure $\{\ ,\ \}$ and let $\mathbf{a} = C^{\infty}(M)$ be the set of \mathbb{L} C-valued C^{∞} functions on M. \mathbf{a} is a commutative topological algebra with the C^{∞} topology. A \mathbf{a} ison structure $\{\ ,\ \}$ is a bilinear mapping $\{\ ,\ \}$: $\mathbf{a} \times \mathbf{a} \longrightarrow \mathbf{a}$ with which \mathbf{a} is a Lie algebra and sisfies the derivation property. $$\{f, gh\} = \{f, g\}h + g\{f, h\} \text{ for any } f, g, h \in \mathbf{a}.$$ (1.1) -- {, }) is called a Poisson algebra. With a formal parameter ν , we set the direct product $$\mathbf{a}[[\nu]] = \prod_{n=0}^{\infty} \nu^n \mathbf{a}. \tag{1.2}$$ \Rightarrow t us consider a bilinear product $*: \mathbf{a}[[\nu]] \times \mathbf{a}[[\nu]] \rightarrow \mathbf{a}[[\nu]]$, which is written as $$f * g = \sum_{n=0}^{\infty} \nu^n \pi_n(f, g), \ \pi_n(f, g) \in \mathbf{a}, \text{ for any } f, g \in \mathbf{a},$$ (1.3)