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ABSTRACT 

Geometric quantization enables the unification of the classical and quantum the
ori es of rotating fluids. The Riemann hydrodynamic equations of motion form a 
Hamiltonian dynamical system on co-adjoint orbits of a Lie subgroup GCM(3) of 
the noncompa.ct Lie group Sp(3,R ). T he general collective motion group GCM(3) is 
a 15-dimensional semidirect product of a. six-dimensional abelian normal subgroup 
R 6 with the motion group G I(3,R ). The Lie algeb ra of R 6 is spanned by the in
ertia tensor . The quantum theory of rotating fluids is constructed from irreducible 
unitary representations of GCM(3) . The Kelvin circulation oftbe fluid is qua.ntized 
to nonnegative integer multiples of n. 

-:1. . Riemann 's Model 

Rotating systems of particles are a ubiquitous form of collectivity that is found in 
nature on a continuum scale spanning 35 orders of magnitude from galaxies (period 
'T~ 200 mi llion years ~ 10 15S), stars (T"-' 106s), and fluid droplets (T'" Is) to atomic 
nuclei (T~ 10 - 20S). 1,2 A rotating system may be either classical (L~ Ti) or quantum 
mechanical (L'" Ti) depending upon the val ue of its angular momentum L compared to 
Ft. The moment of inert ia may attain the limiting cases of rigid rotation or irrotational 
£low or it may fall at some intermediate value. 

Amidst this dynamical complexity, there is one simp lifying common denominator. 
'The shape of a rotating system is usually ellipsoidal. The size, deformation, and 
<:>rientation of an ellipsoid is characterized completely by the inert ia tensor, 

(I) 

"",here m" is the mass of part icle Q" located at the position vector X ", with respect to 
a.n inert ial center of mass frame. For a cont in uous fluid, tbe sum is replaced by an 
integral over the mass density distribution. With respect to the body-fixed principal 
a.xis frame, the inert ia tensor is, by defi njtion, d iagonal, 
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