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ABSTRACT

The aim of this lecture is to exorcise the ghosts from geometric
quantization of systems with constraints. A brief review of geo-
metric quantization theory is given, and it is shown, that for the
momentum map constraints, one can obtain a consistent theory
free of ghosts.

A . Poisson Algebra

The starting point for the geometric quantization of classical systems is
+t he Hamiltonian formulation of their dynamics. The scene of the action is the
T>hase space P of the system endowed with a symplectic form w, that is a closed
xron-degenerate 2-form on P. For finite dimensional manifolds non-degeneracy of w
3 mmplies that the left contraction with w, is an isomorphism

TP —-T*P:ur—u jw.

For every smooth function f on P, there exists a unique vector field ¢ 7 on
& such that

Ef _]w = —df )
<alled the Hamiltonian vector field of f. Hamiltonian vector fields preserve w,
Loy =€ _Jdw+d(Es_Jw) = —d2f =0.
Conversely, vector fields preserving w are locally Hamiltonian. Motions of the sys-
tem with Hamiltonian H are given by the integral curves of £.

The mapping f + & is a linear homomorphism of the space C*°(P) of
smooth functions into the space X(P) of smooth vector fields on P. Its kernel
<onsists of locally constant functions on P. The Lie bracket in X (P) induces a lie
‘bracket in C*(P) as follows. For fi and f2 in C®°(P),

[&fngfz]_]w = CE!, (Ef'z_]w) - Eh_.ij[]w =



