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Abstract 

We propose a uniform method for derivation of the energy spectrum of the 
geodesic flow of the sphere sn (and hence of the Kepler problem) for all dimen
sions n ~ 1. The idea is to use Marsden-Weinstein reduction in the context of 
equivariant cohomology. The one-dimensional case is thus covered by the general 
geometric quantization scheme. 

In the present note we propose a general procedure which produces the spectrum 
(with the multiplicities) of the geodesic flow on the n-dimensional sphere. In view of pre
vious work of many authors,l-a the point is to include in the "geometric"quantization 
scheme7 the case n = 1. We recall that this problem is equivalent with the problem 
of quantization of the n-dimensional hydrogen atom. Because of limited space we do 
not reproduce here all proofs and computations, which shall be given elsewhere. The 
authors are convinced, that the trick introduced (using equivariant instead of ordinary 
cohomology) should work in several other important cases, and see the treatment of 
the geodesic flow of sn bellow as a useful example. 

The geodesic flow on sn is the Hamiltonian system (P, 0', F) where, 

(1) 
n = 1,2,3, ... 

The orbits of these Hamiltonian systems are the great circles on the respective spheres. 
The energy hypersurfaces cI> = f (fixed velocities) can be easily identified with the Stiefel 
manifolds of oriented orthonormal two-frames in Rn+I, 

V(2,n + 1) = SO(n + l)/SO(n -1), 

thus 

and 
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by rescaling 

Using stereographic projection the sphere sn is mapped onto Rn and these mappings can 
be further extended to symplectomorphisms between the corresponding phase spaces 
T· sn and T· ~. Besides, these symplectomorphisms map the Hamiltonian of the re
spective Kepler problem (M,w,H) in Rn, 

M = R 2n , W = dp 1\ dq, 

H = p2/2 - I/Iql, 1 12 2 2 2 
q = ql + q2 + ... + qn 

onto the kinetic energy function on T· sn and send the (regularized) Kepler motion 
in Rn onto the geodesic flow on sn. The corresponding energy hypersurfaces p< are 
mapped diffeomorphically onto 

ME = ((q,p) E M; H(q,p) = E}, 

where E = -i. The orbits that lie on these energy hypersurfaces are parametrized by 
the points of the Grasmannians 

G(2,n + 1) = SO(n + I)/(SO(n -1) x SO(2)) 

of oriented two-planes in ~+1. These Grasmannians are compact Hermitean symmetric 
spaces which are isometric to the nonsingular (n - I)-dimensional complex quadrics 

n+1 

Qn-l = {[z!, Z2, . .. , Zn+1] E C pn; L z; = O} 
j=l 

equipped with the canonical Kaehler structure induced by the Fubini-Study metric in 
cpn. 

The cases n = 1,2 and 3 deserve special considerations. E.g., when n = 3, we 
have the standard Kepler problem in R3 and Q2 is a ruled complex surface which is a 
product of two copies of Cpl. Quantization of the above manifold was done by Simms.8 

If n = 2 , we get Ql which is isomorphic to CPl. In this case the Stiefel manifold 
V(2,3) of orthonormal two-frames in R3 is isomorphic to the Lie group SO(3), which 
is non-simply connected, i.e., 

11"1 (SO(3)) = HI (SO(3), Z) = Z2 =f. O. 

The problems occurring in this situation are treated in more details in our previous 
work.9 The correct energy levels and multiplicities can be obtained if one takes into 
account only the line bundles on the reduced phase space which are restrictions of 
quantum line bundles on C p2. 

The innovation proposed here is to use SO( n + 1) equivariant, rather than ordinary 
cohomology on the orbit space, in order to obtain a uniform solution of the problem 
for all dimensions, including n = 1. In the present note we just sketch the scheme, by 
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showing that the old and the new scheme give the same result when n > 1 and compute 
the spectrum in the case n = 1 to obtain the classical results. 2,5 

As there are several expositionslO,l1 of the fundamental results of equivariant co
homology, we just state the relevant definitions and results, by using the notation of 
Atiyah and BottY 

Let M be a manifold and let G be a Lie group acting on M. Let EG and BG = 
EG/G be respectively the universal principal bundle and the classifying space for the 
group G. We denote by MG the associated M-bundle 

MG =MxGEG. 

Then the equivariant cohomology ring with coefficients in the ring F is defined by 

H~(M, F) £:! H*(MG, F). (2) 

When KeG is a Lie subgroup and M is the homogeneous space G / K, we have 

H~(M,F) £:! H*(EG/K,F) = H*(BK,F). 

In particular 

H~(pt, F) £:! H*(BG, F). (3) 

It is well known that if K is a torus of dimension k the above cohomology ring is just 
the (cut) polynomial ring of k generators of degree two with coefficients in F , i.e. 

If G is a compact Lie group with maximal torus K and Weyl group W then we have 

(4) 

i.e. the cohomology ring of the classifying space BK of the group K consists of 
the W-symmetric polynomials and is again generated by k elements of even degree 
(the "elementary symmetric functions"). In any case the equivariant cohomology ring 
H*(BG, Z) = H'G labels the irreducible representations of the group G. 

We shall always interpret H'G(M, R) as the equivariant de Rham cohomology ring 
of M as described in Ref. 12. Let (M,O') be a symplectic manifold with a G-invariant 
symplectic form 0', and let 

J: M -+ g* (5) 

be a moment map for the Hamiltonian action of G on M. Then the map J determines 
a unique "equivariant extension" 

0' -+ 0'# E H~(M, R) 

(see Ref. 12, Prop. 6.18). 
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Now the SO(2) action defined by the geodesic flow of the sphere on the symplectic 
manifold (P,O") with a momentum map 

cI>: P -> R (6) 

described in formula (1), commutes with the natural symplectic action of SO(n + 1) 
on the same manifold (we take the obvious action of SO( n + 1) on sn and lift it to the 
cotangent bundle). In our previous treatment of the geodesic flow9,13 for n > 1 we have 
reduced the symplectic form 0" to a form 0", on the orbit space cI>-I(E)/ SO(2) ~ Qn-l -
the nonsingular quadric in pn, via the Marsden-Weinstein reduction theoreml4 . Then 
using the geometric quantization integrality condition of Czyzl5 and Hessl6 on the 
cohomology class 

we have obtained the spectrum of the problem, i.e. the admissible values EN and their 
multiplicities mN as 

where LN is the holomorphic line bundle with 

This procedure (initiated by Simms8 ) obviously does not work when n = 1 because Qo 
is just the disjoint union of two points (E =f. 0). 

We identify so( n + 1)* (via the Killing form) as the space of all antisymmetric 
matrices with the (co)adjoint action of SO(n + 1). The moment map 

J : P -t so( n + 1) 

of the natural action of SO( n + 1) on P = T* sn is given by 

Obviously 

for all i, j, because the Hamiltonian cI> is invariant with respect to the action of SO( n+ 1). 

Thus the equivariant extension 0"# of 0" is invariant under the SO(2) action defined 
by (P, 0", cI» (the geodesic flow). This allows us to "reduce" 0"# E HSO(n+I)(P, R) to an 
element 

O"! E HSO(n+1)(Qn-bR) = H*(B(SO(n -1) x SO(2)),R). 

The admissibility condition for the parameter E is now the condition 

O"! - (1/2)CI (Qn-d# E HSO(n+l) ( Qn-l, Z) = H*(B(SO(n - 1) x SO(2)), Z) (7) 
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which gives the spectrum: 

1 n - 3 
EN = 2(N + -2-)\ N= 1,2, ... (8) 

The multiplicities mN of the spectral values EN are the dimensions of the corresponding 
representations: 

_ 2N + n - 3 (N + n - 2) 
mN-

N+n-2 N-l 

valid for all values of nand N, except n = N = 1 (see bellow). 

Now let n = 1. Then (see Ref. 12) 

(J'# = (J' - Ju, (9) 

where u is the generator of HSO(2) (pt, R) = H*(BSO(2), R) and J is as in (5) the 
moment map 

One computes easily that 

Now if we reduce the element (9) at <I> = E, the condition (7) becomes 

±~u = (J'~ E H*(BSO(2), Z) 

whence 

±~u= lu 

for some integer I. 

The admissibility condition for the energy thus reduces to 

(10) 

and we introduce the standard index N = III + 1. 

This gives the energy values (8) for the case n = 1. The dimensions of the irre
ducible representations of SO(2) are of course known to be equal to 1, and as there are 
two representations (values of J) corresponding to the eigenvalue 

N = 1,2, ... (11) 

we have 

mN =2 for all N> 1, 
(12) 
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Of course the double degeneracy of the spectrum corresponds topologically to the fact 
that for ~ > 0 the orbit space Qo consists of two points. 

Remark: The abstract one-dimensional H-atom model is of definite interest for such 
areas as the theories of excitons3, atoms4, and interaction of electrons with the surface 
of liquid heliuml , just to mention a few of them. Using momentum representation it was 
analyzed by Yepez et al.6 , while Davtyan et al.2 and Boya et alP verify that Moser's 
equivalencel8 holds also in dimension one and explained some of the peculiarities of the 
direct solution of the quantum-mechanical problem.s 
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