AFFINE POISSON STRUCTURES IN ANALYTICAL MECHANICS

Paweł Urbański

Department of Mathematical Methods in Physics University of Warsaw Hoża 74, 00-682 Warszawa Poland

Abstract

If the space-time is a product of the space and the time the Poisson structure on the phase bundle is used to describe dynamics of mechanical systems. Further it is shown that if the space-time is a fibration over the time, then the Poisson structure has to be replaced by an affine Poisson structure.

1. TIME-DEPENDENT SYSTEMS

1.1. Time Independent Systems

In order to define a time-independent system the space-time has to be the product of space and time represented by the real line \mathbb{R} . For a time-independent system with configuration manifold Q, the infinitesimal dynamics is a submanifold D of \mathbf{TT}^*Q . In particular cases D is the image of a vector field. The cotangent bundle \mathbf{T}^*Q with the canonical 2-form ω_Q is a symplectic manifold.¹⁻³ The tangent bundle \mathbf{TT}^*Q of the cotangent bundle with the tangent 2-form $d_{\rm T}\omega_{\rm O}$ is a symplectic manifold as well.^{4,5} We say that the system is Lagrangian if the dynamics D is a Lagrange submanifold of $(\mathbf{TT}^*Q, d_{\mathbf{T}}\omega_{\mathcal{O}}).$

Let us denote by τ_Q the canonical projection $\tau_Q: \mathbf{T}Q \to Q$ and by π_Q the canonical projection $\pi_{\rho}: \mathbf{T}^* Q \to Q$. There are three, fundamental for the analytical mechanics, isomorphisms of vector bundles:

$$\kappa_{Q}: (\tau_{\mathsf{T}Q}:\mathsf{T}\mathsf{T}Q \to \mathsf{T}Q) \longrightarrow (\mathsf{T}\tau_{Q}:\mathsf{T}\mathsf{T}Q \to \mathsf{T}Q) \tag{1.1}$$

$$\begin{aligned} &\kappa_{Q}: (\mathbf{T}_{\mathbf{q}}:\mathbf{T}_{\mathbf{Q}}:\mathbf{T}_{\mathbf{Q}}:\mathbf{T}_{\mathbf{Q}}\to\mathbf{T}_{\mathbf{Q}}) &\longrightarrow (\mathbf{T}_{\mathbf{q}}:\mathbf{T}_{\mathbf{Q}}\to\mathbf{T}_{\mathbf{Q}}) \\ &\alpha_{Q}: (\mathbf{T}_{\mathbf{q}}:\mathbf{T}_{\mathbf{Q}}:\mathbf{T}_{\mathbf{Q}}\to\mathbf{T}_{\mathbf{Q}}) &\longrightarrow (\pi_{\mathbf{T}_{\mathbf{Q}}}:\mathbf{T}_{\mathbf{T}}^{*}\mathbf{T}_{\mathbf{Q}}\to\mathbf{T}_{\mathbf{Q}}) \end{aligned}$$
(1.1)

$$\beta_{Q}: (\mathbf{T}\pi_{Q}:\mathbf{T}\mathbf{T}^{*}Q \to \mathbf{T}Q) \longrightarrow (\pi_{\mathbf{T}^{*}Q}\mathbf{T}^{*}\mathbf{T}^{*}Q \to \mathbf{T}^{*}Q)$$
(1.3)

The mapping α_Q is also a symplectomorphism of $(\mathsf{TT}^*Q, \mathsf{T}\pi_Q)$ and $(\mathsf{T}^*\mathsf{T}Q, \pi_{\mathsf{T}Q})$. The mapping β_Q is a symplectomorphism of $(\mathbf{TT}^*Q, \mathbf{T}\pi_Q)$ and $(\mathbf{T}^*\mathbf{T}^*Q, \pi_{\mathbf{T}^*Q})$.

Let the dynamics D of a system be a Lagrangian submanifold of $(\mathbf{TT}^*Q, \mathbf{T}\pi_Q)$. It follows that $\alpha_Q(D)$ and $\beta_Q(D)$ are Lagrangian submanifolds of $(\mathbf{T}^*\mathbf{T}Q, \pi_{\mathbf{T}Q})$ and $(\mathbf{T}^*\mathbf{T}^*Q, \pi_{\mathbf{T}^*O})$ respectively. By a theorem of Hörmander $\alpha_Q(D)$ and $\beta_Q(D)$ can be