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Abstract This chapter presents recent developments in finding systematically con-
servation laws and nonlocal symmetries for partial differential equations. There is
a review of local symmetries, including Lie’s algorithm to find local symmetries in
evolutionary form and their applications. The Direct Method for finding local con-
servation laws is reviewed and its relationship to and extension of Noether’s theorem
are discussed. Moreover, it is shown how symmetries, including discrete symmetries
may yield additional conservation laws from known conservation laws. Systematic
procedures are presented to seek nonlocally related PDE systems for a given PDE
system with two independent variables. In particular, these procedures include the
use of conservation laws, point symmetries, and subsystems (including subsystems
arising after appropriate invertible transformations of variables) to obtain trees of
equivalent nonlocally related PDE systems. In turn, it is shown how the calculation
of point symmetries of such nonlocally related systems leads to the discovery of
nonlocal symmetries for a given PDE system. The situation of systematically con-
structing useful nonlocally related systems in multidimensions is considered. Many
illustrative examples are provided.

1 Introduction

This chapter is concerned with recent developments in finding conservation laws
(CLs) and nonlocal symmetries for partial differential equations (PDEs). It focuses
on recent research of the authors and some of the first author’s collaborators, includ-
ing Stephen Anco, Alexei Cheviakov, Temuer Chaolu, Jean-François Ganghoffer,
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